| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version | ||
| Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5404 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
| 2 | df-bj-inftyexpitau 37232 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 3 | 1, 2 | fnmpti 6624 | . . 3 ⊢ +∞eiτ Fn ℝ |
| 4 | dffn4 6741 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
| 6 | df-bj-ccinftyN 37234 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
| 7 | 6 | eqcomi 2740 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
| 8 | foeq3 6733 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
| 10 | 5, 9 | mpbi 230 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 {csn 4576 〈cop 4582 ran crn 5617 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 1st c1st 7919 Rcnr 10753 ℝcr 11002 {Rcfractemp 37229 +∞eiτcinftyexpitau 37231 ℂ∞NcccinftyN 37233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-fun 6483 df-fn 6484 df-fo 6487 df-bj-inftyexpitau 37232 df-bj-ccinftyN 37234 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |