Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version |
Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
2 | df-bj-inftyexpitau 35297 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
3 | 1, 2 | fnmpti 6560 | . . 3 ⊢ +∞eiτ Fn ℝ |
4 | dffn4 6678 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
5 | 3, 4 | mpbi 229 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
6 | df-bj-ccinftyN 35299 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
7 | 6 | eqcomi 2747 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
8 | foeq3 6670 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
10 | 5, 9 | mpbi 229 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 {csn 4558 〈cop 4564 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 1st c1st 7802 Rcnr 10552 ℝcr 10801 {Rcfractemp 35294 +∞eiτcinftyexpitau 35296 ℂ∞NcccinftyN 35298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 df-fo 6424 df-bj-inftyexpitau 35297 df-bj-ccinftyN 35299 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |