| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version | ||
| Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5424 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
| 2 | df-bj-inftyexpitau 37187 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 3 | 1, 2 | fnmpti 6661 | . . 3 ⊢ +∞eiτ Fn ℝ |
| 4 | dffn4 6778 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
| 6 | df-bj-ccinftyN 37189 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
| 7 | 6 | eqcomi 2738 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
| 8 | foeq3 6770 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
| 10 | 5, 9 | mpbi 230 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {csn 4589 〈cop 4595 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 ‘cfv 6511 1st c1st 7966 Rcnr 10818 ℝcr 11067 {Rcfractemp 37184 +∞eiτcinftyexpitau 37186 ℂ∞NcccinftyN 37188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 df-fo 6517 df-bj-inftyexpitau 37187 df-bj-ccinftyN 37189 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |