![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version |
Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5460 | . . . 4 ⊢ ⟨({R‘(1st ‘𝑥)), {R}⟩ ∈ V | |
2 | df-bj-inftyexpitau 36614 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st ‘𝑥)), {R}⟩) | |
3 | 1, 2 | fnmpti 6692 | . . 3 ⊢ +∞eiτ Fn ℝ |
4 | dffn4 6811 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
5 | 3, 4 | mpbi 229 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
6 | df-bj-ccinftyN 36616 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
7 | 6 | eqcomi 2736 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
8 | foeq3 6803 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
10 | 5, 9 | mpbi 229 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 {csn 4624 ⟨cop 4630 ran crn 5673 Fn wfn 6537 –onto→wfo 6540 ‘cfv 6542 1st c1st 7985 Rcnr 10880 ℝcr 11129 {Rcfractemp 36611 +∞eiτcinftyexpitau 36613 ℂ∞NcccinftyN 36615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-fun 6544 df-fn 6545 df-fo 6548 df-bj-inftyexpitau 36614 df-bj-ccinftyN 36616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |