| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version | ||
| Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5449 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
| 2 | df-bj-inftyexpitau 37134 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 3 | 1, 2 | fnmpti 6690 | . . 3 ⊢ +∞eiτ Fn ℝ |
| 4 | dffn4 6805 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
| 6 | df-bj-ccinftyN 37136 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
| 7 | 6 | eqcomi 2743 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
| 8 | foeq3 6797 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
| 10 | 5, 9 | mpbi 230 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 {csn 4606 〈cop 4612 ran crn 5666 Fn wfn 6535 –onto→wfo 6538 ‘cfv 6540 1st c1st 7993 Rcnr 10886 ℝcr 11135 {Rcfractemp 37131 +∞eiτcinftyexpitau 37133 ℂ∞NcccinftyN 37135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-fun 6542 df-fn 6543 df-fo 6546 df-bj-inftyexpitau 37134 df-bj-ccinftyN 37136 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |