| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version | ||
| Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5432 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
| 2 | df-bj-inftyexpitau 37184 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 3 | 1, 2 | fnmpti 6669 | . . 3 ⊢ +∞eiτ Fn ℝ |
| 4 | dffn4 6785 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
| 6 | df-bj-ccinftyN 37186 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
| 7 | 6 | eqcomi 2739 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
| 8 | foeq3 6777 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
| 10 | 5, 9 | mpbi 230 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {csn 4597 〈cop 4603 ran crn 5647 Fn wfn 6514 –onto→wfo 6517 ‘cfv 6519 1st c1st 7975 Rcnr 10836 ℝcr 11085 {Rcfractemp 37181 +∞eiτcinftyexpitau 37183 ℂ∞NcccinftyN 37185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-fun 6521 df-fn 6522 df-fo 6525 df-bj-inftyexpitau 37184 df-bj-ccinftyN 37186 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |