![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version |
Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5465 | . . . 4 ⊢ ⟨({R‘(1st ‘𝑥)), {R}⟩ ∈ V | |
2 | df-bj-inftyexpitau 36748 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st ‘𝑥)), {R}⟩) | |
3 | 1, 2 | fnmpti 6697 | . . 3 ⊢ +∞eiτ Fn ℝ |
4 | dffn4 6814 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
5 | 3, 4 | mpbi 229 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
6 | df-bj-ccinftyN 36750 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
7 | 6 | eqcomi 2734 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
8 | foeq3 6806 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
10 | 5, 9 | mpbi 229 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 {csn 4629 ⟨cop 4635 ran crn 5678 Fn wfn 6542 –onto→wfo 6545 ‘cfv 6547 1st c1st 7990 Rcnr 10888 ℝcr 11137 {Rcfractemp 36745 +∞eiτcinftyexpitau 36747 ℂ∞NcccinftyN 36749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-fun 6549 df-fn 6550 df-fo 6553 df-bj-inftyexpitau 36748 df-bj-ccinftyN 36750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |