Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaufo Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaufo 35988
Description: The function +∞e written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaufo +∞e:ℝ–onto→ℂ∞N

Proof of Theorem bj-inftyexpitaufo
StepHypRef Expression
1 opex 5460 . . . 4 ⟨({R‘(1st𝑥)), {R}⟩ ∈ V
2 df-bj-inftyexpitau 35985 . . . 4 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
31, 2fnmpti 6683 . . 3 +∞e Fn ℝ
4 dffn4 6801 . . 3 (+∞e Fn ℝ ↔ +∞e:ℝ–onto→ran +∞e)
53, 4mpbi 229 . 2 +∞e:ℝ–onto→ran +∞e
6 df-bj-ccinftyN 35987 . . . 4 ∞N = ran +∞e
76eqcomi 2742 . . 3 ran +∞e = ℂ∞N
8 foeq3 6793 . . 3 (ran +∞e = ℂ∞N → (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N))
97, 8ax-mp 5 . 2 (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N)
105, 9mpbi 229 1 +∞e:ℝ–onto→ℂ∞N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  {csn 4624  cop 4630  ran crn 5673   Fn wfn 6530  ontowfo 6533  cfv 6535  1st c1st 7960  Rcnr 10847  cr 11096  {Rcfractemp 35982  +∞ecinftyexpitau 35984  ∞NcccinftyN 35986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-fun 6537  df-fn 6538  df-fo 6541  df-bj-inftyexpitau 35985  df-bj-ccinftyN 35987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator