![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version |
Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5476 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
2 | df-bj-inftyexpitau 37194 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
3 | 1, 2 | fnmpti 6716 | . . 3 ⊢ +∞eiτ Fn ℝ |
4 | dffn4 6831 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
5 | 3, 4 | mpbi 230 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
6 | df-bj-ccinftyN 37196 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
7 | 6 | eqcomi 2745 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
8 | foeq3 6823 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
10 | 5, 9 | mpbi 230 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1538 {csn 4632 〈cop 4638 ran crn 5691 Fn wfn 6561 –onto→wfo 6564 ‘cfv 6566 1st c1st 8017 Rcnr 10909 ℝcr 11158 {Rcfractemp 37191 +∞eiτcinftyexpitau 37193 ℂ∞NcccinftyN 37195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-fun 6568 df-fn 6569 df-fo 6572 df-bj-inftyexpitau 37194 df-bj-ccinftyN 37196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |