Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaufo Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaufo 35373
Description: The function +∞e written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaufo +∞e:ℝ–onto→ℂ∞N

Proof of Theorem bj-inftyexpitaufo
StepHypRef Expression
1 opex 5379 . . . 4 ⟨({R‘(1st𝑥)), {R}⟩ ∈ V
2 df-bj-inftyexpitau 35370 . . . 4 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
31, 2fnmpti 6576 . . 3 +∞e Fn ℝ
4 dffn4 6694 . . 3 (+∞e Fn ℝ ↔ +∞e:ℝ–onto→ran +∞e)
53, 4mpbi 229 . 2 +∞e:ℝ–onto→ran +∞e
6 df-bj-ccinftyN 35372 . . . 4 ∞N = ran +∞e
76eqcomi 2747 . . 3 ran +∞e = ℂ∞N
8 foeq3 6686 . . 3 (ran +∞e = ℂ∞N → (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N))
97, 8ax-mp 5 . 2 (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N)
105, 9mpbi 229 1 +∞e:ℝ–onto→ℂ∞N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  {csn 4561  cop 4567  ran crn 5590   Fn wfn 6428  ontowfo 6431  cfv 6433  1st c1st 7829  Rcnr 10621  cr 10870  {Rcfractemp 35367  +∞ecinftyexpitau 35369  ∞NcccinftyN 35371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-fun 6435  df-fn 6436  df-fo 6439  df-bj-inftyexpitau 35370  df-bj-ccinftyN 35372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator