Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaufo | Structured version Visualization version GIF version |
Description: The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaufo | ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5379 | . . . 4 ⊢ 〈({R‘(1st ‘𝑥)), {R}〉 ∈ V | |
2 | df-bj-inftyexpitau 35370 | . . . 4 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
3 | 1, 2 | fnmpti 6576 | . . 3 ⊢ +∞eiτ Fn ℝ |
4 | dffn4 6694 | . . 3 ⊢ (+∞eiτ Fn ℝ ↔ +∞eiτ:ℝ–onto→ran +∞eiτ) | |
5 | 3, 4 | mpbi 229 | . 2 ⊢ +∞eiτ:ℝ–onto→ran +∞eiτ |
6 | df-bj-ccinftyN 35372 | . . . 4 ⊢ ℂ∞N = ran +∞eiτ | |
7 | 6 | eqcomi 2747 | . . 3 ⊢ ran +∞eiτ = ℂ∞N |
8 | foeq3 6686 | . . 3 ⊢ (ran +∞eiτ = ℂ∞N → (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (+∞eiτ:ℝ–onto→ran +∞eiτ ↔ +∞eiτ:ℝ–onto→ℂ∞N) |
10 | 5, 9 | mpbi 229 | 1 ⊢ +∞eiτ:ℝ–onto→ℂ∞N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 {csn 4561 〈cop 4567 ran crn 5590 Fn wfn 6428 –onto→wfo 6431 ‘cfv 6433 1st c1st 7829 Rcnr 10621 ℝcr 10870 {Rcfractemp 35367 +∞eiτcinftyexpitau 35369 ℂ∞NcccinftyN 35371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 df-fo 6439 df-bj-inftyexpitau 35370 df-bj-ccinftyN 35372 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |