Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaufo Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaufo 37175
Description: The function +∞e written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaufo +∞e:ℝ–onto→ℂ∞N

Proof of Theorem bj-inftyexpitaufo
StepHypRef Expression
1 opex 5411 . . . 4 ⟨({R‘(1st𝑥)), {R}⟩ ∈ V
2 df-bj-inftyexpitau 37172 . . . 4 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
31, 2fnmpti 6629 . . 3 +∞e Fn ℝ
4 dffn4 6746 . . 3 (+∞e Fn ℝ ↔ +∞e:ℝ–onto→ran +∞e)
53, 4mpbi 230 . 2 +∞e:ℝ–onto→ran +∞e
6 df-bj-ccinftyN 37174 . . . 4 ∞N = ran +∞e
76eqcomi 2738 . . 3 ran +∞e = ℂ∞N
8 foeq3 6738 . . 3 (ran +∞e = ℂ∞N → (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N))
97, 8ax-mp 5 . 2 (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N)
105, 9mpbi 230 1 +∞e:ℝ–onto→ℂ∞N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  {csn 4579  cop 4585  ran crn 5624   Fn wfn 6481  ontowfo 6484  cfv 6486  1st c1st 7929  Rcnr 10778  cr 11027  {Rcfractemp 37169  +∞ecinftyexpitau 37171  ∞NcccinftyN 37173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-fun 6488  df-fn 6489  df-fo 6492  df-bj-inftyexpitau 37172  df-bj-ccinftyN 37174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator