Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaufo Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaufo 36617
Description: The function +∞e written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaufo +∞e:ℝ–onto→ℂ∞N

Proof of Theorem bj-inftyexpitaufo
StepHypRef Expression
1 opex 5460 . . . 4 ⟨({R‘(1st𝑥)), {R}⟩ ∈ V
2 df-bj-inftyexpitau 36614 . . . 4 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
31, 2fnmpti 6692 . . 3 +∞e Fn ℝ
4 dffn4 6811 . . 3 (+∞e Fn ℝ ↔ +∞e:ℝ–onto→ran +∞e)
53, 4mpbi 229 . 2 +∞e:ℝ–onto→ran +∞e
6 df-bj-ccinftyN 36616 . . . 4 ∞N = ran +∞e
76eqcomi 2736 . . 3 ran +∞e = ℂ∞N
8 foeq3 6803 . . 3 (ran +∞e = ℂ∞N → (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N))
97, 8ax-mp 5 . 2 (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N)
105, 9mpbi 229 1 +∞e:ℝ–onto→ℂ∞N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  {csn 4624  cop 4630  ran crn 5673   Fn wfn 6537  ontowfo 6540  cfv 6542  1st c1st 7985  Rcnr 10880  cr 11129  {Rcfractemp 36611  +∞ecinftyexpitau 36613  ∞NcccinftyN 36615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-fun 6544  df-fn 6545  df-fo 6548  df-bj-inftyexpitau 36614  df-bj-ccinftyN 36616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator