Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaufo Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaufo 37235
Description: The function +∞e written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaufo +∞e:ℝ–onto→ℂ∞N

Proof of Theorem bj-inftyexpitaufo
StepHypRef Expression
1 opex 5404 . . . 4 ⟨({R‘(1st𝑥)), {R}⟩ ∈ V
2 df-bj-inftyexpitau 37232 . . . 4 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
31, 2fnmpti 6624 . . 3 +∞e Fn ℝ
4 dffn4 6741 . . 3 (+∞e Fn ℝ ↔ +∞e:ℝ–onto→ran +∞e)
53, 4mpbi 230 . 2 +∞e:ℝ–onto→ran +∞e
6 df-bj-ccinftyN 37234 . . . 4 ∞N = ran +∞e
76eqcomi 2740 . . 3 ran +∞e = ℂ∞N
8 foeq3 6733 . . 3 (ran +∞e = ℂ∞N → (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N))
97, 8ax-mp 5 . 2 (+∞e:ℝ–onto→ran +∞e ↔ +∞e:ℝ–onto→ℂ∞N)
105, 9mpbi 230 1 +∞e:ℝ–onto→ℂ∞N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  {csn 4576  cop 4582  ran crn 5617   Fn wfn 6476  ontowfo 6479  cfv 6481  1st c1st 7919  Rcnr 10753  cr 11002  {Rcfractemp 37229  +∞ecinftyexpitau 37231  ∞NcccinftyN 37233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-fun 6483  df-fn 6484  df-fo 6487  df-bj-inftyexpitau 37232  df-bj-ccinftyN 37234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator