Home | Metamath
Proof Explorer Theorem List (p. 368 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dmqs1cosscnvepreseq 36701 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
Definition | df-ers 36702 |
Define the class of equivalence relations on domain quotients (or: domain
quotients restricted to equivalence relations).
The present definition of equivalence relation in set.mm df-er 8456 "is not standard", "somewhat cryptic", has no costant 0-ary class and does not follow the traditional transparent reflexive-symmetric-transitive relation way of definition of equivalence. Definitions df-eqvrels 36624, dfeqvrels2 36628, dfeqvrels3 36629 and df-eqvrel 36625, dfeqvrel2 36630, dfeqvrel3 36631 are fully transparent in this regard. However, they lack the domain component (dom 𝑅 = 𝐴) of the present df-er 8456. While we acknowledge the need of a domain component, the present df-er 8456 definition does not utilize the results revealed by the new theorems in the Partition-Equivalence Theorem part below (like ~? pets and ~? pet ). From those theorems follows that the natural domain of equivalence relations is not 𝑅Domain𝐴 (i.e. dom 𝑅 = 𝐴 see brdomaing 34164), but 𝑅 DomainQss 𝐴 (i.e. (dom 𝑅 / 𝑅) = 𝐴, see brdmqss 36686), see erim 36717 vs. prter3 36823. While I'm sure we need both equivalence relation df-eqvrels 36624 and equivalence relation on domain quotient df-ers 36702, I'm not sure whether we need a third equivalence relation concept with the present dom 𝑅 = 𝐴 component as well: this needs further investigation. As a default I suppose that these two concepts df-eqvrels 36624 and df-ers 36702 are enough and named the predicate version of the one on domain quotient as the alternate version df-erALTV 36703 of the present df-er 8456. (Contributed by Peter Mazsa, 26-Jun-2021.) |
⊢ Ers = ( DomainQss ↾ EqvRels ) | ||
Definition | df-erALTV 36703 | Equivalence relation with natural domain predicate, see also the comment of df-ers 36702. Alternate definition is dferALTV2 36707. Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets, see brerser 36715. (Contributed by Peter Mazsa, 12-Aug-2021.) |
⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | ||
Definition | df-members 36704 | Define the class of membership equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022.) (Revised by Peter Mazsa, 24-Jul-2023.) |
⊢ MembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | ||
Definition | df-member 36705 |
Define the membership equivalence relation on the class 𝐴 (or, the
restricted elementhood equivalence relation on its domain quotient
𝐴.) Alternate definitions are dfmember2 36712 and dfmember3 36713.
Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.) |
⊢ ( MembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | ||
Theorem | brers 36706 | Binary equivalence relation with natural domain, see the comment of df-ers 36702. (Contributed by Peter Mazsa, 23-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | ||
Theorem | dferALTV2 36707 | Equivalence relation with natural domain predicate, see the comment of df-ers 36702. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 30-Aug-2021.) |
⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
Theorem | erALTVeq1 36708 | Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
Theorem | erALTVeq1i 36709 | Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) | ||
Theorem | erALTVeq1d 36710 | Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
Theorem | dfmember 36711 | Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ( MembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | ||
Theorem | dfmember2 36712 | Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | dfmember3 36713 | Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | eqvreldmqs 36714 | Two ways to express membership equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | brerser 36715 | Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) | ||
Theorem | erim2 36716 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 36823 in a more convenient form , see also erim 36717). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | ||
Theorem | erim 36717 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 36823 and erim2 36716). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) | ||
Definition | df-funss 36718 | Define the class of all function sets (but not necessarily function relations, cf. df-funsALTV 36719). It is used only by df-funsALTV 36719. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } | ||
Definition | df-funsALTV 36719 | Define the function relations class, i.e., the class of functions. Alternate definitions are dffunsALTV 36721, ... , dffunsALTV5 36725. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ FunsALTV = ( Funss ∩ Rels ) | ||
Definition | df-funALTV 36720 |
Define the function relation predicate, i.e., the function predicate.
This definition of the function predicate (based on a more general,
converse reflexive, relation) and the original definition of function in
set.mm df-fun 6420, are always the same, that is
( FunALTV 𝐹 ↔ Fun 𝐹), see funALTVfun 36736.
The element of the class of functions and the function predicate are the same, that is (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹) when 𝐹 is a set, see elfunsALTVfunALTV 36735. Alternate definitions are dffunALTV2 36726, ... , dffunALTV5 36729. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | ||
Theorem | dffunsALTV 36721 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | ||
Theorem | dffunsALTV2 36722 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } | ||
Theorem | dffunsALTV3 36723* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} | ||
Theorem | dffunsALTV4 36724* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} | ||
Theorem | dffunsALTV5 36725* | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓∀𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]◡𝑓 ∩ [𝑦]◡𝑓) = ∅)} | ||
Theorem | dffunALTV2 36726 | Alternate definition of the function relation predicate, cf. dfdisjALTV2 36752. (Contributed by Peter Mazsa, 8-Feb-2018.) |
⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | ||
Theorem | dffunALTV3 36727* | Alternate definition of the function relation predicate, cf. dfdisjALTV3 36753. Reproduction of dffun2 6428. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) | ||
Theorem | dffunALTV4 36728* | Alternate definition of the function relation predicate, cf. dfdisjALTV4 36754. This is dffun6 6433. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) | ||
Theorem | dffunALTV5 36729* | Alternate definition of the function relation predicate, cf. dfdisjALTV5 36755. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) | ||
Theorem | elfunsALTV 36730 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV2 36731 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV3 36732* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV4 36733* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV5 36734* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTVfunALTV 36735 | The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) | ||
Theorem | funALTVfun 36736 | Our definition of the function predicate df-funALTV 36720 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6420, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) | ||
Theorem | funALTVss 36737 | Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | ||
Theorem | funALTVeq 36738 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Theorem | funALTVeqi 36739 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( FunALTV 𝐴 ↔ FunALTV 𝐵) | ||
Theorem | funALTVeqd 36740 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Definition | df-disjss 36741 | Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 36742). It is used only by df-disjs 36742. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } | ||
Definition | df-disjs 36742 |
Define the disjoint relations class, i.e., the class of disjoints. We
need Disjs for the definition of Parts and Part
for the
Partition-Equivalence Theorems: this need for Parts as disjoint relations
on their domain quotients is the reason why we must define Disjs
instead of simply using converse functions (cf. dfdisjALTV 36751).
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36765. Alternate definitions are dfdisjs 36746, ... , dfdisjs5 36750. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjs = ( Disjss ∩ Rels ) | ||
Definition | df-disjALTV 36743 |
Define the disjoint relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 36751,
see the comment of df-disjs 36742 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36765. Alternate definitions are dfdisjALTV 36751, ... , dfdisjALTV5 36755. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | ||
Definition | df-eldisjs 36744 | Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36767. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | ||
Definition | df-eldisj 36745 |
Define the disjoint elementhood relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 36767.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 36813 with dfeldisj5 36759. See also the comments of ~? dfmembpart2 and of ~? df-parts . (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | ||
Theorem | dfdisjs 36746 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | ||
Theorem | dfdisjs2 36747 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | ||
Theorem | dfdisjs3 36748* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢∀𝑣∀𝑥((𝑢𝑟𝑥 ∧ 𝑣𝑟𝑥) → 𝑢 = 𝑣)} | ||
Theorem | dfdisjs4 36749* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} | ||
Theorem | dfdisjs5 36750* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} | ||
Theorem | dfdisjALTV 36751 | Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 36742 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV2 36752 | Alternate definition of the disjoint relation predicate, cf. dffunALTV2 36726. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV3 36753* | Alternate definition of the disjoint relation predicate, cf. dffunALTV3 36727. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV4 36754* | Alternate definition of the disjoint relation predicate, cf. dffunALTV4 36728. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV5 36755* | Alternate definition of the disjoint relation predicate, cf. dffunALTV5 36729. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | dfeldisj2 36756 | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) | ||
Theorem | dfeldisj3 36757* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣) | ||
Theorem | dfeldisj4 36758* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | ||
Theorem | dfeldisj5 36759* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) | ||
Theorem | eldisjs 36760 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs2 36761 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs3 36762* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs4 36763* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs5 36764* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) | ||
Theorem | eldisjsdisj 36765 | The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | ||
Theorem | eleldisjs 36766 | Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) | ||
Theorem | eleldisjseldisj 36767 | The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) | ||
Theorem | disjrel 36768 | Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) |
⊢ ( Disj 𝑅 → Rel 𝑅) | ||
Theorem | disjss 36769 | Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjssi 36770 | Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( Disj 𝐵 → Disj 𝐴) | ||
Theorem | disjssd 36771 | Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjeq 36772 | Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjeqi 36773 | Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( Disj 𝐴 ↔ Disj 𝐵) | ||
Theorem | disjeqd 36774 | Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjdmqseqeq1 36775 | Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021.) |
⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | ||
Theorem | eldisjss 36776 | Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjssi 36777 | Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) | ||
Theorem | eldisjssd 36778 | Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjeq 36779 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | eldisjeqi 36780 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
Theorem | eldisjeqd 36781 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | disjxrn 36782 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
Theorem | disjorimxrn 36783 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimxrn 36784 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimres 36785 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
Theorem | disjimin 36786 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
Theorem | disjiminres 36787 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
Theorem | disjimxrnres 36788 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
Theorem | disjALTV0 36789 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ∅ | ||
Theorem | disjALTVid 36790 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
⊢ Disj I | ||
Theorem | disjALTVidres 36791 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ( I ↾ 𝐴) | ||
Theorem | disjALTVinidres 36792 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
Theorem | disjALTVxrnidres 36793 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
Theorem | prtlem60 36794 | Lemma for prter3 36823. (Contributed by Rodolfo Medina, 9-Oct-2010.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | ||
Theorem | bicomdd 36795 | Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ↔ 𝜒))) | ||
Theorem | jca2r 36796 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜓 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) | ||
Theorem | jca3 36797 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) | ||
Theorem | prtlem70 36798 | Lemma for prter3 36823: a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010.) |
⊢ ((((𝜓 ∧ 𝜂) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜏))) ∧ 𝜑) ↔ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ (𝜃 ∧ 𝜏)))) ∧ 𝜂)) | ||
Theorem | ibdr 36799 | Reverse of ibd 268. (Contributed by Rodolfo Medina, 30-Sep-2010.) |
⊢ (𝜑 → (𝜒 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜓)) | ||
Theorem | prtlem100 36800 | Lemma for prter3 36823. (Contributed by Rodolfo Medina, 19-Oct-2010.) |
⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |