| Metamath
Proof Explorer Theorem List (p. 368 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-nnfa 36701 | Nonfreeness implies the equivalent of ax-5 1910. See nf5r 2195. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | ||
| Theorem | bj-nnfad 36702 | Nonfreeness implies the equivalent of ax-5 1910, deduction form. See nf5rd 2197. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | ||
| Theorem | bj-nnfai 36703 | Nonfreeness implies the equivalent of ax-5 1910, inference form. See nf5ri 2196. (Contributed by BJ, 22-Sep-2024.) |
| ⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
| Theorem | bj-nnfe 36704 | Nonfreeness implies the equivalent of ax5e 1912. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | ||
| Theorem | bj-nnfed 36705 | Nonfreeness implies the equivalent of ax5e 1912, deduction form. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜓)) | ||
| Theorem | bj-nnfei 36706 | Nonfreeness implies the equivalent of ax5e 1912, inference form. (Contributed by BJ, 22-Sep-2024.) |
| ⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → 𝜑) | ||
| Theorem | bj-nnfea 36707 | Nonfreeness implies the equivalent of ax5ea 1913. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
| Theorem | bj-nnfead 36708 | Nonfreeness implies the equivalent of ax5ea 1913, deduction form. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) | ||
| Theorem | bj-nnfeai 36709 | Nonfreeness implies the equivalent of ax5ea 1913, inference form. (Contributed by BJ, 22-Sep-2024.) |
| ⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) | ||
| Theorem | bj-dfnnf2 36710 | Alternate definition of df-bj-nnf 36697 using only primitive symbols (→, ¬, ∀) in each conjunct. (Contributed by BJ, 20-Aug-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) | ||
| Theorem | bj-nnfnfTEMP 36711 | New nonfreeness implies old nonfreeness on minimal implicational calculus (the proof indicates it uses ax-3 8 because of set.mm's definition of the biconditional, but the proof actually holds in minimal implicational calculus). (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1784 except via df-nf 1784 directly. (Proof modification is discouraged.) |
| ⊢ (Ⅎ'𝑥𝜑 → Ⅎ𝑥𝜑) | ||
| Theorem | bj-wnfnf 36712 | When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 36719, bj-nnfe1 36733 and bj-nnfa1 36732. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) | ||
| Theorem | bj-nnfnt 36713 | A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 36719). Intuitionistically, ⊢ (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1856. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) | ||
| Theorem | bj-nnftht 36714 | A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp 2184 (modal T), as in bj-nnfbi 36698. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ((𝜑 ∧ ∀𝑥𝜑) → Ⅎ'𝑥𝜑) | ||
| Theorem | bj-nnfth 36715 | A variable is nonfree in a theorem, inference form. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
| Theorem | bj-nnfnth 36716 | A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
| Theorem | bj-nnfim1 36717 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-nnfim2 36718 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) | ||
| Theorem | bj-nnfim 36719 | Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) | ||
| Theorem | bj-nnfimd 36720 | Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 → 𝜒)) | ||
| Theorem | bj-nnfan 36721 | Nonfreeness in both conjuncts implies nonfreeness in the conjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of conjunction in terms of implication and negation, so using bj-nnfim 36719, bj-nnfnt 36713 and bj-nnfbi 36698, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ∧ 𝜓)) | ||
| Theorem | bj-nnfand 36722 | Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 36721, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 36721 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 36722 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∧ 𝜒)) | ||
| Theorem | bj-nnfor 36723 | Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim 36719, bj-nnfnt 36713 and bj-nnfbi 36698, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | bj-nnford 36724 | Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor 36723 and bj-nnfand 36722. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∨ 𝜒)) | ||
| Theorem | bj-nnfbit 36725 | Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ↔ 𝜓)) | ||
| Theorem | bj-nnfbid 36726 | Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) | ||
| Theorem | bj-nnfv 36727* | A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ Ⅎ'𝑥𝜑 | ||
| Theorem | bj-nnf-alrim 36728 | Proof of the closed form of alrimi 2214 from modalK (compare alrimiv 1927). See also bj-alrim 36666. Actually, most proofs between 19.3t 2202 and 2sbbid 2248 could be proved without ax-12 2178. (Contributed by BJ, 20-Aug-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-nnf-exlim 36729 | Proof of the closed form of exlimi 2218 from modalK (compare exlimiv 1930). See also bj-sylget2 36595. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) | ||
| Theorem | bj-dfnnf3 36730 | Alternate definition of nonfreeness when sp 2184 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1784. (Proof modification is discouraged.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
| Theorem | bj-nfnnfTEMP 36731 | New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2184. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1784 except via df-nf 1784 directly. (Proof modification is discouraged.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑) | ||
| Theorem | bj-nnfa1 36732 | See nfa1 2152. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ Ⅎ'𝑥∀𝑥𝜑 | ||
| Theorem | bj-nnfe1 36733 | See nfe1 2151. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ Ⅎ'𝑥∃𝑥𝜑 | ||
| Theorem | bj-19.12 36734 | See 19.12 2326. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2163 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1784 or df-bj-nnf 36697, directly or indirectly. (Proof modification is discouraged.) |
| ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) | ||
| Theorem | bj-nnflemaa 36735 | One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 36654. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | ||
| Theorem | bj-nnflemee 36736 | One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑)) | ||
| Theorem | bj-nnflemae 36737 | One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | ||
| Theorem | bj-nnflemea 36738 | One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∀𝑥𝜑 → ∀𝑥𝜑)) | ||
| Theorem | bj-nnfalt 36739 | See nfal 2322 and bj-nfalt 36684. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦∀𝑥𝜑) | ||
| Theorem | bj-nnfext 36740 | See nfex 2323 and bj-nfext 36685. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦∃𝑥𝜑) | ||
| Theorem | bj-stdpc5t 36741 | Alias of bj-nnf-alrim 36728 for labeling consistency (a standard predicate calculus axiom). Closed form of stdpc5 2209 proved from modalK (obsoleting stdpc5v 1938). (Contributed by BJ, 2-Dec-2023.) Use bj-nnf-alrim 36728 instead. (New usaged is discouraged.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-19.21t 36742 | Statement 19.21t 2207 proved from modalK (obsoleting 19.21v 1939). (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-19.23t 36743 | Statement 19.23t 2211 proved from modalK (obsoleting 19.23v 1942). (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
| Theorem | bj-19.36im 36744 | One direction of 19.36 2231 from the same axioms as 19.36imv 1945. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | ||
| Theorem | bj-19.37im 36745 | One direction of 19.37 2233 from the same axioms as 19.37imv 1947. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓))) | ||
| Theorem | bj-19.42t 36746 | Closed form of 19.42 2237 from the same axioms as 19.42v 1953. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))) | ||
| Theorem | bj-19.41t 36747 | Closed form of 19.41 2236 from the same axioms as 19.41v 1949. The same is doable with 19.27 2228, 19.28 2229, 19.31 2235, 19.32 2234, 19.44 2238, 19.45 2239. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) | ||
| Theorem | bj-sbft 36748 | Version of sbft 2270 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | bj-pm11.53vw 36749 | Version of pm11.53v 1944 with nonfreeness antecedents. One can also prove the theorem with antecedent (Ⅎ'𝑦∀𝑥𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓). (Contributed by BJ, 7-Oct-2024.) |
| ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
| Theorem | bj-pm11.53v 36750 | Version of pm11.53v 1944 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.) |
| ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
| Theorem | bj-pm11.53a 36751* | A variant of pm11.53v 1944. One can similarly prove a variant with DV (𝑦, 𝜑) and ∀𝑦Ⅎ'𝑥𝜓 instead of DV (𝑥, 𝜓) and ∀𝑥Ⅎ'𝑦𝜑. (Contributed by BJ, 7-Oct-2024.) |
| ⊢ (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
| Theorem | bj-equsvt 36752* | A variant of equsv 2003. (Contributed by BJ, 7-Oct-2024.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
| Theorem | bj-equsalvwd 36753* | Variant of equsalvw 2004. (Contributed by BJ, 7-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | bj-equsexvwd 36754* | Variant of equsexvw 2005. (Contributed by BJ, 7-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | ||
| Theorem | bj-sbievwd 36755* | Variant of sbievw 2094. (Contributed by BJ, 7-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | bj-axc10 36756 | Alternate proof of axc10 2383. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2370, by using ax6ev 1969 instead of ax6e 2381. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
| Theorem | bj-alequex 36757 | A fol lemma. See alequexv 2001 for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt 2384 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | ||
| Theorem | bj-spimt2 36758 | A step in the proof of spimt 2384. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | ||
| Theorem | bj-cbv3ta 36759 | Closed form of cbv3 2395. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) | ||
| Theorem | bj-cbv3tb 36760 | Closed form of cbv3 2395. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦Ⅎ𝑥𝜓 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) | ||
| Theorem | bj-hbsb3t 36761 | A theorem close to a closed form of hbsb3 2485. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | ||
| Theorem | bj-hbsb3 36762 | Shorter proof of hbsb3 2485. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfs1t 36763 | A theorem close to a closed form of nfs1 2486. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfs1t2 36764 | A theorem close to a closed form of nfs1 2486. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfs1 36765 | Shorter proof of nfs1 2486 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
It is known that ax-13 2370 is logically redundant (see ax13w 2137 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 2370 from every theorem in set.mm which is totally unbundled (i.e., has disjoint variable conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 2370 with ax13w 2137. This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 2370 (and using ax6v 1968 / ax6ev 1969 instead of ax-6 1967 / ax6e 2381, as is currently done). One reason to be optimistic is that the first few utility theorems using ax-13 2370 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice. In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 2370, labeled bj-xxxv (we follow the proof of xxx but use ax6v 1968 and ax6ev 1969 instead of ax-6 1967 and ax6e 2381, and ax-5 1910 instead of ax13v 2371; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx. It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dispense with ax-13 2370, so as to remove dependencies on ax-13 2370 from many existing theorems. UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw. It is also possible to remove dependencies on ax-11 2158, typically by replacing a nonfree hypothesis with a disjoint variable condition (see cbv3v2 2242 and following theorems). | ||
| Theorem | bj-axc10v 36766* | Version of axc10 2383 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
| Theorem | bj-spimtv 36767* | Version of spimt 2384 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | bj-cbv3hv2 36768* | Version of cbv3h 2402 with two disjoint variable conditions, which does not require ax-11 2158 nor ax-13 2370. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
| Theorem | bj-cbv1hv 36769* | Version of cbv1h 2403 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
| Theorem | bj-cbv2hv 36770* | Version of cbv2h 2404 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | bj-cbv2v 36771* | Version of cbv2 2401 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | bj-cbvaldv 36772* | Version of cbvald 2405 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | bj-cbvexdv 36773* | Version of cbvexd 2406 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
| Theorem | bj-cbval2vv 36774* | Version of cbval2vv 2411 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
| Theorem | bj-cbvex2vv 36775* | Version of cbvex2vv 2412 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
| Theorem | bj-cbvaldvav 36776* | Version of cbvaldva 2407 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | bj-cbvexdvav 36777* | Version of cbvexdva 2408 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
| Theorem | bj-cbvex4vv 36778* | Version of cbvex4v 2413 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
| Theorem | bj-equsalhv 36779* |
Version of equsalh 2418 with a disjoint variable condition, which
does not
require ax-13 2370. Remark: this is the same as equsalhw 2291. TODO:
delete after moving the following paragraph somewhere.
Remarks: equsexvw 2005 has been moved to Main; Theorem ax13lem2 2374 has a DV version which is a simple consequence of ax5e 1912; Theorems nfeqf2 2375, dveeq2 2376, nfeqf1 2377, dveeq1 2378, nfeqf 2379, axc9 2380, ax13 2373, have dv versions which are simple consequences of ax-5 1910. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | bj-axc11nv 36780* | Version of axc11n 2424 with a disjoint variable condition; instance of aevlem 2056. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | bj-aecomsv 36781* | Version of aecoms 2426 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2427 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5383). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
| Theorem | bj-axc11v 36782* | Version of axc11 2428 with a disjoint variable condition, which does not require ax-13 2370 nor ax-10 2142. Remark: the following theorems (hbae 2429, nfae 2431, hbnae 2430, nfnae 2432, hbnaes 2433) would need to be totally unbundled to be proved without ax-13 2370, hence would be simple consequences of ax-5 1910 or nfv 1914. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Theorem | bj-drnf2v 36783* | Version of drnf2 2442 with a disjoint variable condition, which does not require ax-10 2142, ax-11 2158, ax-12 2178, ax-13 2370. Instance of nfbidv 1922. Note that the version of axc15 2420 with a disjoint variable condition is actually ax12v2 2180 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
| Theorem | bj-equs45fv 36784* | Version of equs45f 2457 with a disjoint variable condition, which does not require ax-13 2370. Note that the version of equs5 2458 with a disjoint variable condition is actually sbalex 2243 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | bj-hbs1 36785* | Version of hbsb2 2480 with a disjoint variable condition, which does not require ax-13 2370, and removal of ax-13 2370 from hbs1 2274. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfs1v 36786* | Version of nfsb2 2481 with a disjoint variable condition, which does not require ax-13 2370, and removal of ax-13 2370 from nfs1v 2157. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
| Theorem | bj-hbsb2av 36787* | Version of hbsb2a 2482 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-hbsb3v 36788* | Version of hbsb3 2485 with a disjoint variable condition, which does not require ax-13 2370. (Remark: the unbundled version of nfs1 2486 is given by bj-nfs1v 36786.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfsab1 36789* | Remove dependency on ax-13 2370 from nfsab1 2715. UPDATE / TODO: nfsab1 2715 does not use ax-13 2370 either anymore; bj-nfsab1 36789 is shorter than nfsab1 2715 but uses ax-12 2178. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | ||
| Theorem | bj-dtrucor2v 36790* | Version of dtrucor2 5314 with a disjoint variable condition, which does not require ax-13 2370 (nor ax-4 1809, ax-5 1910, ax-7 2008, ax-12 2178). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
The closed formula ∀𝑥∀𝑦𝑥 = 𝑦 approximately means that the var metavariables 𝑥 and 𝑦 represent the same variable vi. In a domain with at most one object, however, this formula is always true, hence the "approximately" in the previous sentence. | ||
| Theorem | bj-hbaeb2 36791 | Biconditional version of a form of hbae 2429 with commuted quantifiers, not requiring ax-11 2158. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | ||
| Theorem | bj-hbaeb 36792 | Biconditional version of hbae 2429. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
| Theorem | bj-hbnaeb 36793 | Biconditional version of hbnae 2430 (to replace it?). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | bj-dvv 36794 | A special instance of bj-hbaeb2 36791. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑦 𝑥 = 𝑦) | ||
As a rule of thumb, if a theorem of the form ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) is in the database, and the "more precise" theorems ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜒 → 𝜃) and ⊢ (𝜓 → 𝜑) ⇒ ⊢ (𝜃 → 𝜒) also hold (see bj-bisym 36563), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2416 (and equsalh 2418 and equsexh 2419). Even if only one of these two theorems holds, it should be added to the database. | ||
| Theorem | bj-equsal1t 36795 | Duplication of wl-equsal1t 37515, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2001 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 37516 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
| Theorem | bj-equsal1ti 36796 | Inference associated with bj-equsal1t 36795. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) | ||
| Theorem | bj-equsal1 36797 | One direction of equsal 2415. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜓) | ||
| Theorem | bj-equsal2 36798 | One direction of equsal 2415. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) | ||
| Theorem | bj-equsal 36799 | Shorter proof of equsal 2415. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2415, but "min */exc equsal" is ok. (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx". | ||
| Theorem | stdpc5t 36800 | Closed form of stdpc5 2209. (Possible to place it before 19.21t 2207 and use it to prove 19.21t 2207). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |