HomeHome Metamath Proof Explorer
Theorem List (p. 368 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 36701-36800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdmqs1cosscnvepreseq 36701 Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.)
((dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
 
20.22.15  Equivalence relations on domain quotients
 
Definitiondf-ers 36702 Define the class of equivalence relations on domain quotients (or: domain quotients restricted to equivalence relations).

The present definition of equivalence relation in set.mm df-er 8456 "is not standard", "somewhat cryptic", has no costant 0-ary class and does not follow the traditional transparent reflexive-symmetric-transitive relation way of definition of equivalence. Definitions df-eqvrels 36624, dfeqvrels2 36628, dfeqvrels3 36629 and df-eqvrel 36625, dfeqvrel2 36630, dfeqvrel3 36631 are fully transparent in this regard. However, they lack the domain component (dom 𝑅 = 𝐴) of the present df-er 8456. While we acknowledge the need of a domain component, the present df-er 8456 definition does not utilize the results revealed by the new theorems in the Partition-Equivalence Theorem part below (like ~? pets and ~? pet ). From those theorems follows that the natural domain of equivalence relations is

not 𝑅Domain𝐴 (i.e. dom 𝑅 = 𝐴 see brdomaing 34164),

but 𝑅 DomainQss 𝐴 (i.e. (dom 𝑅 / 𝑅) = 𝐴, see brdmqss 36686), see erim 36717 vs. prter3 36823.

While I'm sure we need both equivalence relation df-eqvrels 36624 and equivalence relation on domain quotient df-ers 36702, I'm not sure whether we need a third equivalence relation concept with the present dom 𝑅 = 𝐴 component as well: this needs further investigation. As a default I suppose that these two concepts df-eqvrels 36624 and df-ers 36702 are enough and named the predicate version of the one on domain quotient as the alternate version df-erALTV 36703 of the present df-er 8456. (Contributed by Peter Mazsa, 26-Jun-2021.)

Ers = ( DomainQss ↾ EqvRels )
 
Definitiondf-erALTV 36703 Equivalence relation with natural domain predicate, see also the comment of df-ers 36702. Alternate definition is dferALTV2 36707. Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets, see brerser 36715. (Contributed by Peter Mazsa, 12-Aug-2021.)
(𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
 
Definitiondf-members 36704 Define the class of membership equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022.) (Revised by Peter Mazsa, 24-Jul-2023.)
MembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
 
Definitiondf-member 36705 Define the membership equivalence relation on the class 𝐴 (or, the restricted elementhood equivalence relation on its domain quotient 𝐴.) Alternate definitions are dfmember2 36712 and dfmember3 36713.

Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.)

( MembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
 
Theorembrers 36706 Binary equivalence relation with natural domain, see the comment of df-ers 36702. (Contributed by Peter Mazsa, 23-Jul-2021.)
(𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
 
TheoremdferALTV2 36707 Equivalence relation with natural domain predicate, see the comment of df-ers 36702. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 30-Aug-2021.)
(𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
 
TheoremerALTVeq1 36708 Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.)
(𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
 
TheoremerALTVeq1i 36709 Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.)
𝑅 = 𝑆       (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴)
 
TheoremerALTVeq1d 36710 Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.)
(𝜑𝑅 = 𝑆)       (𝜑 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
 
Theoremdfmember 36711 Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.)
( MembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)
 
Theoremdfmember2 36712 Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.)
( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
 
Theoremdfmember3 36713 Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.)
( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
 
Theoremeqvreldmqs 36714 Two ways to express membership equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.)
(( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
 
Theorembrerser 36715 Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.)
((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))
 
Theoremerim2 36716 Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 36823 in a more convenient form , see also erim 36717). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.)
(𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))
 
Theoremerim 36717 Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 36823 and erim2 36716). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.)
(𝑅𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅))
 
20.22.16  Functions
 
Definitiondf-funss 36718 Define the class of all function sets (but not necessarily function relations, cf. df-funsALTV 36719). It is used only by df-funsALTV 36719. (Contributed by Peter Mazsa, 17-Jul-2021.)
Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
 
Definitiondf-funsALTV 36719 Define the function relations class, i.e., the class of functions. Alternate definitions are dffunsALTV 36721, ... , dffunsALTV5 36725. (Contributed by Peter Mazsa, 17-Jul-2021.)
FunsALTV = ( Funss ∩ Rels )
 
Definitiondf-funALTV 36720 Define the function relation predicate, i.e., the function predicate. This definition of the function predicate (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6420, are always the same, that is ( FunALTV 𝐹 ↔ Fun 𝐹), see funALTVfun 36736.

The element of the class of functions and the function predicate are the same, that is (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹) when 𝐹 is a set, see elfunsALTVfunALTV 36735. Alternate definitions are dffunALTV2 36726, ... , dffunALTV5 36729. (Contributed by Peter Mazsa, 17-Jul-2021.)

( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
 
TheoremdffunsALTV 36721 Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.)
FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }
 
TheoremdffunsALTV2 36722 Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.)
FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I }
 
TheoremdffunsALTV3 36723* Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 y1 y2 (( x1 𝑓 y1 x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.)
FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢𝑥𝑦((𝑢𝑓𝑥𝑢𝑓𝑦) → 𝑥 = 𝑦)}
 
TheoremdffunsALTV4 36724* Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.)
FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
 
TheoremdffunsALTV5 36725* Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
 
TheoremdffunALTV2 36726 Alternate definition of the function relation predicate, cf. dfdisjALTV2 36752. (Contributed by Peter Mazsa, 8-Feb-2018.)
( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
 
TheoremdffunALTV3 36727* Alternate definition of the function relation predicate, cf. dfdisjALTV3 36753. Reproduction of dffun2 6428. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 y1 y2 (( x1 𝑓 y1 x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.)
( FunALTV 𝐹 ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹))
 
TheoremdffunALTV4 36728* Alternate definition of the function relation predicate, cf. dfdisjALTV4 36754. This is dffun6 6433. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.)
( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
 
TheoremdffunALTV5 36729* Alternate definition of the function relation predicate, cf. dfdisjALTV5 36755. (Contributed by Peter Mazsa, 5-Sep-2021.)
( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ Rel 𝐹))
 
TheoremelfunsALTV 36730 Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.)
(𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
 
TheoremelfunsALTV2 36731 Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
(𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
 
TheoremelfunsALTV3 36732* Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
(𝐹 ∈ FunsALTV ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels ))
 
TheoremelfunsALTV4 36733* Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
(𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥𝐹 ∈ Rels ))
 
TheoremelfunsALTV5 36734* Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ 𝐹 ∈ Rels ))
 
TheoremelfunsALTVfunALTV 36735 The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.)
(𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))
 
TheoremfunALTVfun 36736 Our definition of the function predicate df-funALTV 36720 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6420, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.)
( FunALTV 𝐹 ↔ Fun 𝐹)
 
TheoremfunALTVss 36737 Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.)
(𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
 
TheoremfunALTVeq 36738 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
(𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
 
TheoremfunALTVeqi 36739 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 = 𝐵       ( FunALTV 𝐴 ↔ FunALTV 𝐵)
 
TheoremfunALTVeqd 36740 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
 
20.22.17  Disjoints vs. converse functions
 
Definitiondf-disjss 36741 Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 36742). It is used only by df-disjs 36742. (Contributed by Peter Mazsa, 17-Jul-2021.)
Disjss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
 
Definitiondf-disjs 36742 Define the disjoint relations class, i.e., the class of disjoints. We need Disjs for the definition of Parts and Part for the Partition-Equivalence Theorems: this need for Parts as disjoint relations on their domain quotients is the reason why we must define Disjs instead of simply using converse functions (cf. dfdisjALTV 36751).

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36765. Alternate definitions are dfdisjs 36746, ... , dfdisjs5 36750. (Contributed by Peter Mazsa, 17-Jul-2021.)

Disjs = ( Disjss ∩ Rels )
 
Definitiondf-disjALTV 36743 Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV 36751, see the comment of df-disjs 36742 why we need disjoint relations instead of converse functions anyway.

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36765. Alternate definitions are dfdisjALTV 36751, ... , dfdisjALTV5 36755. (Contributed by Peter Mazsa, 17-Jul-2021.)

( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
 
Definitiondf-eldisjs 36744 Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36767. (Contributed by Peter Mazsa, 28-Nov-2022.)
ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
 
Definitiondf-eldisj 36745 Define the disjoint elementhood relation predicate, i.e., the disjoint elementhood predicate. Read: the elements of 𝐴 are disjoint. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36767.

As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 36813 with dfeldisj5 36759. See also the comments of ~? dfmembpart2 and of ~? df-parts . (Contributed by Peter Mazsa, 17-Jul-2021.)

( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
 
Theoremdfdisjs 36746 Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.)
Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
 
Theoremdfdisjs2 36747 Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
 
Theoremdfdisjs3 36748* Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ∀𝑢𝑣𝑥((𝑢𝑟𝑥𝑣𝑟𝑥) → 𝑢 = 𝑣)}
 
Theoremdfdisjs4 36749* Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥}
 
Theoremdfdisjs5 36750* Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
 
TheoremdfdisjALTV 36751 Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 36742 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.)
( Disj 𝑅 ↔ ( FunALTV 𝑅 ∧ Rel 𝑅))
 
TheoremdfdisjALTV2 36752 Alternate definition of the disjoint relation predicate, cf. dffunALTV2 36726. (Contributed by Peter Mazsa, 27-Jul-2021.)
( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
 
TheoremdfdisjALTV3 36753* Alternate definition of the disjoint relation predicate, cf. dffunALTV3 36727. (Contributed by Peter Mazsa, 28-Jul-2021.)
( Disj 𝑅 ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
 
TheoremdfdisjALTV4 36754* Alternate definition of the disjoint relation predicate, cf. dffunALTV4 36728. (Contributed by Peter Mazsa, 5-Sep-2021.)
( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
 
TheoremdfdisjALTV5 36755* Alternate definition of the disjoint relation predicate, cf. dffunALTV5 36729. (Contributed by Peter Mazsa, 5-Sep-2021.)
( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
 
Theoremdfeldisj2 36756 Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ≀ ( E ↾ 𝐴) ⊆ I )
 
Theoremdfeldisj3 36757* Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)𝑢 = 𝑣)
 
Theoremdfeldisj4 36758* Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
 
Theoremdfeldisj5 36759* Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
 
Theoremeldisjs 36760 Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.)
(𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
 
Theoremeldisjs2 36761 Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))
 
Theoremeldisjs3 36762* Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅 ∈ Disjs ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels ))
 
Theoremeldisjs4 36763* Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥𝑅 ∈ Rels ))
 
Theoremeldisjs5 36764* Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )))
 
Theoremeldisjsdisj 36765 The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.)
(𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
 
Theoremeleldisjs 36766 Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.)
(𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
 
Theoremeleldisjseldisj 36767 The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.)
(𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))
 
Theoremdisjrel 36768 Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.)
( Disj 𝑅 → Rel 𝑅)
 
Theoremdisjss 36769 Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
(𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))
 
Theoremdisjssi 36770 Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.)
𝐴𝐵       ( Disj 𝐵 → Disj 𝐴)
 
Theoremdisjssd 36771 Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.)
(𝜑𝐴𝐵)       (𝜑 → ( Disj 𝐵 → Disj 𝐴))
 
Theoremdisjeq 36772 Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.)
(𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
 
Theoremdisjeqi 36773 Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.)
𝐴 = 𝐵       ( Disj 𝐴 ↔ Disj 𝐵)
 
Theoremdisjeqd 36774 Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵))
 
Theoremdisjdmqseqeq1 36775 Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021.)
(𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)))
 
Theoremeldisjss 36776 Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))
 
Theoremeldisjssi 36777 Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.)
𝐴𝐵       ( ElDisj 𝐵 → ElDisj 𝐴)
 
Theoremeldisjssd 36778 Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.)
(𝜑𝐴𝐵)       (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴))
 
Theoremeldisjeq 36779 Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
 
Theoremeldisjeqi 36780 Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.)
𝐴 = 𝐵       ( ElDisj 𝐴 ↔ ElDisj 𝐵)
 
Theoremeldisjeqd 36781 Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
 
Theoremdisjxrn 36782 Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
 
Theoremdisjorimxrn 36783 Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
(( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))
 
Theoremdisjimxrn 36784 Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
( Disj 𝑆 → Disj (𝑅𝑆))
 
Theoremdisjimres 36785 Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.)
( Disj 𝑅 → Disj (𝑅𝐴))
 
Theoremdisjimin 36786 Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.)
( Disj 𝑆 → Disj (𝑅𝑆))
 
Theoremdisjiminres 36787 Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.)
( Disj 𝑆 → Disj (𝑅 ∩ (𝑆𝐴)))
 
Theoremdisjimxrnres 36788 Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.)
( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆𝐴)))
 
TheoremdisjALTV0 36789 The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.)
Disj ∅
 
TheoremdisjALTVid 36790 The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.)
Disj I
 
TheoremdisjALTVidres 36791 The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.)
Disj ( I ↾ 𝐴)
 
TheoremdisjALTVinidres 36792 The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Disj (𝑅 ∩ ( I ↾ 𝐴))
 
TheoremdisjALTVxrnidres 36793 The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.)
Disj (𝑅 ⋉ ( I ↾ 𝐴))
 
20.23  Mathbox for Rodolfo Medina
 
20.23.1  Partitions
 
Theoremprtlem60 36794 Lemma for prter3 36823. (Contributed by Rodolfo Medina, 9-Oct-2010.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜓 → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒𝜏)))
 
Theorembicomdd 36795 Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theoremjca2r 36796 Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010.)
(𝜑 → (𝜓𝜒))    &   (𝜓𝜃)       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theoremjca3 36797 Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.)
(𝜑 → (𝜓𝜒))    &   (𝜃𝜏)       (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
 
Theoremprtlem70 36798 Lemma for prter3 36823: a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010.)
((((𝜓𝜂) ∧ ((𝜑𝜃) ∧ (𝜒𝜏))) ∧ 𝜑) ↔ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ (𝜃𝜏)))) ∧ 𝜂))
 
Theoremibdr 36799 Reverse of ibd 268. (Contributed by Rodolfo Medina, 30-Sep-2010.)
(𝜑 → (𝜒 → (𝜓𝜒)))       (𝜑 → (𝜒𝜓))
 
Theoremprtlem100 36800 Lemma for prter3 36823. (Contributed by Rodolfo Medina, 19-Oct-2010.)
(∃𝑥𝐴 (𝐵𝑥𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵𝑥𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >