| Metamath
Proof Explorer Theorem List (p. 368 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-cbvexim 36701* | A lemma used to prove bj-cbvex 36705 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))) | ||
| Theorem | bj-cbvalimi 36702* | An equality-free general instance of one half of a precise form of bj-cbval 36704. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜒 → (𝜑 → 𝜓)) & ⊢ ∀𝑦∃𝑥𝜒 ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
| Theorem | bj-cbveximi 36703* | An equality-free general instance of one half of a precise form of bj-cbvex 36705. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜒 → (𝜑 → 𝜓)) & ⊢ ∀𝑥∃𝑦𝜒 ⇒ ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) | ||
| Theorem | bj-cbval 36704* | Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ ∀𝑦∃𝑥 𝑥 = 𝑦 & ⊢ ∀𝑥∃𝑦 𝑦 = 𝑥 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
| Theorem | bj-cbvex 36705* | Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ ∀𝑦∃𝑥 𝑥 = 𝑦 & ⊢ ∀𝑥∃𝑦 𝑦 = 𝑥 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
| Syntax | wmoo 36706 | Syntax for BJ's version of the uniqueness quantifier. |
| wff ∃**𝑥𝜑 | ||
| Definition | df-bj-mo 36707* | Definition of the uniqueness quantifier which is correct on the empty domain. Instead of the fresh variable 𝑧, one could save a dummy variable by using 𝑥 or 𝑦 at the cost of having nested quantifiers on the same variable. (Contributed by BJ, 12-Mar-2023.) |
| ⊢ (∃**𝑥𝜑 ↔ ∀𝑧∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
| Theorem | bj-ssbeq 36708* | Substitution in an equality, disjoint variables case. Uses only ax-1 6 through ax-6 1968. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 36708 first with a DV condition on 𝑥, 𝑡, and then in the general case. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ ([𝑡 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧) | ||
| Theorem | bj-ssblem1 36709* | A lemma for the definiens of df-sb 2068. An instance of sp 2188 proved without it. Note: it has a common subproof with sbjust 2066. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-ssblem2 36710* | An instance of ax-11 2162 proved without it. The converse may not be provable without ax-11 2162 (since using alcomimw 2044 would require a DV on 𝜑, 𝑥, which defeats the purpose). (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) → ∀𝑦∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-ax12v 36711* | A weaker form of ax-12 2182 and ax12v 2183, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
| Theorem | bj-ax12 36712* | Remove a DV condition from bj-ax12v 36711 (using core axioms only). (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
| Theorem | bj-ax12ssb 36713* | Axiom bj-ax12 36712 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) | ||
| Theorem | bj-19.41al 36714 | Special case of 19.41 2240 proved from core axioms, ax-10 2146 (modal5), and hba1 2297 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | bj-equsexval 36715* | Special case of equsexv 2273 proved from core axioms, ax-10 2146 (modal5), and hba1 2297 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) | ||
| Theorem | bj-subst 36716* | Proof of sbalex 2247 from core axioms, ax-10 2146 (modal5), and bj-ax12 36712. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | bj-ssbid2 36717 | A special case of sbequ2 2254. (Contributed by BJ, 22-Dec-2020.) |
| ⊢ ([𝑥 / 𝑥]𝜑 → 𝜑) | ||
| Theorem | bj-ssbid2ALT 36718 | Alternate proof of bj-ssbid2 36717, not using sbequ2 2254. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ([𝑥 / 𝑥]𝜑 → 𝜑) | ||
| Theorem | bj-ssbid1 36719 | A special case of sbequ1 2253. (Contributed by BJ, 22-Dec-2020.) |
| ⊢ (𝜑 → [𝑥 / 𝑥]𝜑) | ||
| Theorem | bj-ssbid1ALT 36720 | Alternate proof of bj-ssbid1 36719, not using sbequ1 2253. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → [𝑥 / 𝑥]𝜑) | ||
| Theorem | bj-ax6elem1 36721* | Lemma for bj-ax6e 36723. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
| Theorem | bj-ax6elem2 36722* | Lemma for bj-ax6e 36723. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦) | ||
| Theorem | bj-ax6e 36723 | Proof of ax6e 2385 (hence ax6 2386) from Tarski's system, ax-c9 38999, ax-c16 39001. Remark: ax-6 1968 is used only via its principal (unbundled) instance ax6v 1969. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥 𝑥 = 𝑦 | ||
| Theorem | bj-spimvwt 36724* | Closed form of spimvw 1987. See also spimt 2388. (Contributed by BJ, 8-Nov-2021.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | bj-spnfw 36725 | Theorem close to a closed form of spnfw 1980. (Contributed by BJ, 12-May-2019.) |
| ⊢ ((∃𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | bj-cbvexiw 36726* | Change bound variable. This is to cbvexvw 2038 what cbvaliw 2007 is to cbvalvw 2037. TODO: move after cbvalivw 2008. (Contributed by BJ, 17-Mar-2020.) |
| ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) | ||
| Theorem | bj-cbvexivw 36727* | Change bound variable. This is to cbvexvw 2038 what cbvalivw 2008 is to cbvalvw 2037. TODO: move after cbvalivw 2008. (Contributed by BJ, 17-Mar-2020.) |
| ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) | ||
| Theorem | bj-modald 36728 | A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.) |
| ⊢ (∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
| Theorem | bj-denot 36729* | A weakening of ax-6 1968 and ax6v 1969. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑥 → ¬ ∀𝑦 ¬ 𝑦 = 𝑥) | ||
| Theorem | bj-eqs 36730* | A lemma for substitutions, proved from Tarski's FOL. The version without DV (𝑥, 𝑦) is true but requires ax-13 2374. The disjoint variable condition DV (𝑥, 𝜑) is necessary for both directions: consider substituting 𝑥 = 𝑧 for 𝜑. (Contributed by BJ, 25-May-2021.) |
| ⊢ (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | bj-cbvexw 36731* | Change bound variable. This is to cbvexvw 2038 what cbvalw 2036 is to cbvalvw 2037. (Contributed by BJ, 17-Mar-2020.) |
| ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
| Theorem | bj-ax12w 36732* | The general statement that ax12w 2138 proves. (Contributed by BJ, 20-Mar-2020.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-ax89 36733 | A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2115 and ax-9 2123. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2115 and ax-9 2123, as proved here. In the other direction, one can prove ax-8 2115 (respectively ax-9 2123) from bj-ax89 36733 by using mpan2 691 (respectively mpan 690) and equid 2013. TODO: move to main part. (Contributed by BJ, 3-Oct-2019.) |
| ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑡)) | ||
| Theorem | bj-cleljusti 36734* | One direction of cleljust 2122, requiring only ax-1 6-- ax-5 1911 and ax8v1 2117. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦) | ||
| Theorem | bj-alcomexcom 36735 | Commutation of two existential quantifiers on a formula is equivalent to commutation of two universal quantifiers over the same variables on the negation of that formula. Can be placed in the ax-4 1810 section, soon after 2nexaln 1831, and used to prove excom 2167. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) |
| ⊢ ((∀𝑥∀𝑦 ¬ 𝜑 → ∀𝑦∀𝑥 ¬ 𝜑) ↔ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑)) | ||
| Theorem | bj-hbalt 36736 | Closed form of hbal 2172. When in main part, prove hbal 2172 and hbald 2173 from it. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||
| Theorem | axc11n11 36737 | Proof of axc11n 2428 from { ax-1 6-- ax-7 2009, axc11 2432 } . Almost identical to axc11nfromc11 39035. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | axc11n11r 36738 |
Proof of axc11n 2428 from { ax-1 6--
ax-7 2009, axc9 2384, axc11r 2370 } (note
that axc16 2266 is provable from { ax-1 6--
ax-7 2009, axc11r 2370 }).
Note that axc11n 2428 proves (over minimal calculus) that axc11 2432 and axc11r 2370 are equivalent. Therefore, axc11n11 36737 and axc11n11r 36738 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2432 appears slightly stronger since axc11n11r 36738 requires axc9 2384 while axc11n11 36737 does not). (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | bj-axc16g16 36739* | Proof of axc16g 2265 from { ax-1 6-- ax-7 2009, axc16 2266 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
| Theorem | bj-ax12v3 36740* | A weak version of ax-12 2182 which is stronger than ax12v 2183. Note that if one assumes reflexivity of equality ⊢ 𝑥 = 𝑥 (equid 2013), then bj-ax12v3 36740 implies ax-5 1911 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 36741. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-ax12v3ALT 36741* | Alternate proof of bj-ax12v3 36740. Uses axc11r 2370 and axc15 2424 instead of ax-12 2182. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-sb 36742* | A weak variant of sbid2 2510 not requiring ax-13 2374 nor ax-10 2146. On top of Tarski's FOL, one implication requires only ax12v 2183, and the other requires only sp 2188. (Contributed by BJ, 25-May-2021.) |
| ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-modalbe 36743 | The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2322. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (𝜑 → ∀𝑥∃𝑥𝜑) | ||
| Theorem | bj-spst 36744 | Closed form of sps 2190. Once in main part, prove sps 2190 and spsd 2192 from it. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ ((𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | bj-19.21bit 36745 | Closed form of 19.21bi 2194. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ ((𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) | ||
| Theorem | bj-19.23bit 36746 | Closed form of 19.23bi 2196. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ ((∃𝑥𝜑 → 𝜓) → (𝜑 → 𝜓)) | ||
| Theorem | bj-nexrt 36747 | Closed form of nexr 2197. Contrapositive of 19.8a 2186. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (¬ ∃𝑥𝜑 → ¬ 𝜑) | ||
| Theorem | bj-alrim 36748 | Closed form of alrimi 2218. (Contributed by BJ, 2-May-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-alrim2 36749 | Uncurried (imported) form of bj-alrim 36748. (Contributed by BJ, 2-May-2019.) |
| ⊢ ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-nfdt0 36750 | A theorem close to a closed form of nf5d 2288 and nf5dh 2152. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓)) | ||
| Theorem | bj-nfdt 36751 | Closed form of nf5d 2288 and nf5dh 2152. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → Ⅎ𝑥𝜓))) | ||
| Theorem | bj-nexdt 36752 | Closed form of nexd 2226. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) | ||
| Theorem | bj-nexdvt 36753* | Closed form of nexdv 1937. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓)) | ||
| Theorem | bj-alexbiex 36754 | Adding a second quantifier over the same variable is a transparent operation, (∀∃ case). (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | bj-exexbiex 36755 | Adding a second quantifier over the same variable is a transparent operation, (∃∃ case). (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∃𝑥∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | bj-alalbial 36756 | Adding a second quantifier over the same variable is a transparent operation, (∀∀ case). (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | bj-exalbial 36757 | Adding a second quantifier over the same variable is a transparent operation, (∃∀ case). (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∃𝑥∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | bj-19.9htbi 36758 | Strengthening 19.9ht 2323 by replacing its consequent with a biconditional (19.9t 2209 does have a biconditional consequent). This propagates. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 ↔ 𝜑)) | ||
| Theorem | bj-hbntbi 36759 | Strengthening hbnt 2298 by replacing its consequent with a biconditional. See also hbntg 35858 and hbntal 44660. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 36758. (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)) | ||
| Theorem | bj-biexal1 36760 | A general FOL biconditional that generalizes 19.9ht 2323 among others. For this and the following theorems, see also 19.35 1878, 19.21 2212, 19.23 2216. When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-biexal2 36761 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(∃𝑥𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-biexal3 36762 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(∃𝑥𝜑 → 𝜓)) | ||
| Theorem | bj-bialal 36763 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-biexex 36764 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → ∃𝑥𝜓) ↔ (∃𝑥𝜑 → ∃𝑥𝜓)) | ||
| Theorem | bj-hbext 36765 | Closed form of hbex 2328. (Contributed by BJ, 10-Oct-2019.) |
| ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | ||
| Theorem | bj-nfalt 36766 | Closed form of nfal 2326. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) | ||
| Theorem | bj-nfext 36767 | Closed form of nfex 2327. (Contributed by BJ, 10-Oct-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∃𝑥𝜑) | ||
| Theorem | bj-eeanvw 36768* | Version of exdistrv 1956 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2162. (The same can be done with eeeanv 2352 and ee4anv 2353.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | ||
| Theorem | bj-modal4 36769 | First-order logic form of the modal axiom (4). See hba1 2297. This is the standard proof of the implication in modal logic (B5 ⇒ 4). Its dual statement is bj-modal4e 36770. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
| Theorem | bj-modal4e 36770 | First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 36769 (hba1 2297). (Contributed by BJ, 21-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) | ||
| Theorem | bj-modalb 36771 | A short form of the axiom B of modal logic using only primitive symbols (→ , ¬ , ∀). (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) |
| ⊢ (¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
| Theorem | bj-wnf1 36772 | When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.) |
| ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-wnf2 36773 | When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.) |
| ⊢ (∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-wnfanf 36774 | When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the universal form of nonfreeness. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓)) | ||
| Theorem | bj-wnfenf 36775 | When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the existential form of nonfreeness. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → 𝜓)) | ||
| Theorem | bj-substax12 36776 |
Equivalent form of the axiom of substitution bj-ax12 36712. Although both
sides need a DV condition on 𝑥, 𝑡 (or as in bj-ax12v3 36740 on
𝑡,
𝜑) to hold, their
equivalence holds without DV conditions. The
forward implication is proved in modal (K4) while the reverse implication
is proved in modal (T5). The LHS has the advantage of not involving
nested quantifiers on the same variable. Its metaweakening is proved from
the core axiom schemes in bj-substw 36777. Note that in the LHS, the reverse
implication holds by equs4 2418 (or equs4v 2001 if a DV condition is added on
𝑥,
𝑡 as in bj-ax12 36712), and the forward implication is sbalex 2247.
The LHS can be read as saying that if there exists a variable equal to a given term witnessing a given formula, then all variables equal to that term also witness that formula. The equivalent form of the LHS using only primitive symbols is (∀𝑥(𝑥 = 𝑡 → 𝜑) ∨ ∀𝑥(𝑥 = 𝑡 → ¬ 𝜑)), which expresses that a given formula is true at all variables equal to a given term, or false at all these variables. An equivalent form of the LHS using only the existential quantifier is ¬ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑡 ∧ ¬ 𝜑)), which expresses that there can be no two variables both equal to a given term, one witnessing a formula and the other witnessing its negation. These equivalences do not hold in intuitionistic logic. The LHS should be the preferred form, and has the advantage of having no negation nor nested quantifiers. (Contributed by BJ, 21-May-2024.) (Proof modification is discouraged.) |
| ⊢ ((∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) | ||
| Theorem | bj-substw 36777* | Weak form of the LHS of bj-substax12 36776 proved from the core axiom schemes. Compare ax12w 2138. (Contributed by BJ, 26-May-2024.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
| Syntax | wnnf 36778 | Syntax for the nonfreeness quantifier. |
| wff Ⅎ'𝑥𝜑 | ||
| Definition | df-bj-nnf 36779 |
Definition of the nonfreeness quantifier. The formula Ⅎ'𝑥𝜑 has
the intended meaning that the variable 𝑥 is semantically nonfree in
the formula 𝜑. The motivation for this quantifier
is to have a
condition expressible in the logic which is as close as possible to the
non-occurrence condition DV (𝑥, 𝜑) (in Metamath files, "$d x ph
$."), which belongs to the metalogic.
The standard syntactic nonfreeness condition, also expressed in the metalogic, is intermediate between these two notions: semantic nonfreeness implies syntactic nonfreeness, which implies non-occurrence. Both implications are strict; for the first, note that ⊢ Ⅎ'𝑥𝑥 = 𝑥, that is, 𝑥 is semantically (but not syntactically) nonfree in the formula 𝑥 = 𝑥; for the second, note that 𝑥 is syntactically nonfree in the formula ∀𝑥𝑥 = 𝑥 although it occurs in it. We now prove two metatheorems which make precise the above fact that, as far as proving power is concerned, the nonfreeness condition Ⅎ'𝑥𝜑 is very close to the non-occurrence condition DV (𝑥, 𝜑). Let S be a Metamath system with the FOL-syntax of (i)set.mm, containing intuitionistic positive propositional calculus and ax-5 1911 and ax5e 1913. Theorem 1. If the scheme (Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn ⇒ PHI0, DV) is provable in S, then so is the scheme (PHI1 & ... & PHIn ⇒ PHI0, DV ∪ {{𝑥, 𝜑}}). Proof: By bj-nnfv 36809, we can prove (Ⅎ'𝑥𝜑, {{𝑥, 𝜑}}), from which the theorem follows. QED Theorem 2. Suppose that S also contains (the FOL version of) modal logic KB and commutation of quantifiers alcom 2164 and excom 2167 (possibly weakened by a DV condition on the quantifying variables), and that S can be axiomatized such that the only axioms with a DV condition involving a formula variable are among ax-5 1911, ax5e 1913, ax5ea 1914. If the scheme (PHI1 & ... & PHIn ⇒ PHI0, DV) is provable in S, then so is the scheme (Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn ⇒ PHI0, DV ∖ {{𝑥, 𝜑}}). More precisely, if S contains modal 45 and if the variables quantified over in PHI0, ..., PHIn are among 𝑥1, ..., 𝑥m, then the scheme (PHI1 & ... & PHIn ⇒ (antecedent → PHI0), DV ∖ {{𝑥, 𝜑}}) is provable in S, where the antecedent is a finite conjunction of formulas of the form ∀𝑥i1 ...∀𝑥ip Ⅎ'𝑥𝜑 where the 𝑥ij's are among the 𝑥i's. Lemma: If 𝑥 ∉ OC(PHI), then S proves the scheme (Ⅎ'𝑥𝜑 ⇒ Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}). More precisely, if the variables quantified over in PHI are among 𝑥1, ..., 𝑥m, then ((antecedent → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) is provable in S, with the same form of antecedent as above. Proof: By induction on the height of PHI. We first note that by bj-nnfbi 36780 we can assume that PHI contains only primitive (as opposed to defined) symbols. For the base case, atomic formulas are either 𝜑, in which case the scheme to prove is an instance of id 22, or have variables all in OC(PHI) ∖ {𝜑}, so (Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) by bj-nnfv 36809, hence ((Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) by a1i 11. For the induction step, PHI is either an implication, a negation, a conjunction, a disjunction, a biconditional, a universal or an existential quantification of formulas where 𝑥 does not occur. We use respectively bj-nnfim 36801, bj-nnfnt 36795, bj-nnfan 36803, bj-nnfor 36805, bj-nnfbit 36807, bj-nnfalt 36821, bj-nnfext 36822. For instance, in the implication case, if we have by induction hypothesis ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) and ((∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}), then bj-nnfim 36801 yields (((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 ∧ ∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑) → Ⅎ'𝑥 (PHI → PSI)), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI → PSI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the lemma. In the universal quantification case, say quantification over 𝑦, if we have by induction hypothesis ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}), then bj-nnfalt 36821 yields ((∀𝑦∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥∀𝑦 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(∀𝑦 PHI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the lemma. Note bj-nnfalt 36821 and bj-nnfext 36822 are proved from positive propositional calculus with alcom 2164 and excom 2167 (possibly weakened by a DV condition on the quantifying variables), and modalB (via bj-19.12 36816). QED Proof of the theorem: Consider a proof of that scheme directly from the axioms. Consider a step where a DV condition involving 𝜑 is used. By hypothesis, that step is an instance of ax-5 1911 or ax5e 1913 or ax5ea 1914. It has the form (PSI → ∀𝑥 PSI) where PSI has the form of the lemma and the DV conditions of the proof contain {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) }. Therefore, one has ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}) for appropriate 𝑥i's, and by bj-nnfa 36783 we obtain ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → (PSI → ∀𝑥 PSI)), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the theorem. Similarly if the step is using ax5e 1913 or ax5ea 1914, we would use bj-nnfe 36786 or bj-nnfea 36789 respectively. Therefore, taking as antecedent of the theorem to prove the conjunction of all the antecedents at each of these steps, we obtain a proof by "carrying the context over", which is possible, as in the deduction theorem when the step uses ax-mp 5, and when the step uses ax-gen 1796, by bj-nnf-alrim 36810 and bj-nnfa1 36814 (which requires modal 45). The condition DV (𝑥, 𝜑) is not required by the resulting proof. Finally, there may be in the global antecedent thus constructed some dummy variables, which can be removed by spvw 1982. QED Compared with df-nf 1785, the present definition is stricter on positive propositional calculus (bj-nnfnfTEMP 36793) and equivalent on core FOL plus sp 2188 (bj-nfnnfTEMP 36813). While being stricter, it still holds for non-occurring variables (bj-nnfv 36809), which is the basic requirement for this quantifier. In particular, it translates more closely the associated variable disjointness condition. Since the nonfreeness quantifier is a means to translate a variable disjointness condition from the metalogic to the logic, it seems preferable. Also, since nonfreeness is mainly used as a hypothesis, this definition would allow more theorems, notably the 19.xx theorems, to be proved from the core axioms, without needing a 19.xxv variant. One can devise infinitely many definitions increasingly close to the non-occurring condition, like ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥∀𝑥... and each stronger definition would permit more theorems to be proved from the core axioms. A reasonable rule seems to be to stop before nested quantifiers appear (since they typically require ax-10 2146 to work with), and also not to have redundant conjuncts when full metacomplete FOL= is developed. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | ||
| Theorem | bj-nnfbi 36780 | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other. Compare nfbiit 1852. From this and bj-nnfim 36801 and bj-nnfnt 36795, one can prove analogous nonfreeness conservation results for other propositional operators. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 36796) in order not to require sp 2188 (modal T). (Contributed by BJ, 27-Aug-2023.) |
| ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)) | ||
| Theorem | bj-nnfbd 36781* | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi 36780. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒)) | ||
| Theorem | bj-nnfbii 36782 | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, inference form. See bj-nnfbi 36780. (Contributed by BJ, 18-Nov-2023.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓) | ||
| Theorem | bj-nnfa 36783 | Nonfreeness implies the equivalent of ax-5 1911. See nf5r 2199. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | ||
| Theorem | bj-nnfad 36784 | Nonfreeness implies the equivalent of ax-5 1911, deduction form. See nf5rd 2201. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | ||
| Theorem | bj-nnfai 36785 | Nonfreeness implies the equivalent of ax-5 1911, inference form. See nf5ri 2200. (Contributed by BJ, 22-Sep-2024.) |
| ⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
| Theorem | bj-nnfe 36786 | Nonfreeness implies the equivalent of ax5e 1913. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | ||
| Theorem | bj-nnfed 36787 | Nonfreeness implies the equivalent of ax5e 1913, deduction form. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜓)) | ||
| Theorem | bj-nnfei 36788 | Nonfreeness implies the equivalent of ax5e 1913, inference form. (Contributed by BJ, 22-Sep-2024.) |
| ⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → 𝜑) | ||
| Theorem | bj-nnfea 36789 | Nonfreeness implies the equivalent of ax5ea 1914. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
| Theorem | bj-nnfead 36790 | Nonfreeness implies the equivalent of ax5ea 1914, deduction form. (Contributed by BJ, 2-Dec-2023.) |
| ⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) | ||
| Theorem | bj-nnfeai 36791 | Nonfreeness implies the equivalent of ax5ea 1914, inference form. (Contributed by BJ, 22-Sep-2024.) |
| ⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) | ||
| Theorem | bj-dfnnf2 36792 | Alternate definition of df-bj-nnf 36779 using only primitive symbols (→, ¬, ∀) in each conjunct. (Contributed by BJ, 20-Aug-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) | ||
| Theorem | bj-nnfnfTEMP 36793 | New nonfreeness implies old nonfreeness on minimal implicational calculus (the proof indicates it uses ax-3 8 because of set.mm's definition of the biconditional, but the proof actually holds in minimal implicational calculus). (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1785 except via df-nf 1785 directly. (Proof modification is discouraged.) |
| ⊢ (Ⅎ'𝑥𝜑 → Ⅎ𝑥𝜑) | ||
| Theorem | bj-wnfnf 36794 | When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 36801, bj-nnfe1 36815 and bj-nnfa1 36814. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) | ||
| Theorem | bj-nnfnt 36795 | A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 36801). Intuitionistically, ⊢ (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1857. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) | ||
| Theorem | bj-nnftht 36796 | A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp 2188 (modal T), as in bj-nnfbi 36780. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ((𝜑 ∧ ∀𝑥𝜑) → Ⅎ'𝑥𝜑) | ||
| Theorem | bj-nnfth 36797 | A variable is nonfree in a theorem, inference form. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
| Theorem | bj-nnfnth 36798 | A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
| Theorem | bj-nnfim1 36799 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-nnfim2 36800 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
| ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |