Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-invc Structured version   Visualization version   GIF version

Definition df-bj-invc 35419
Description: Define inversion, which maps a nonzero extended complex number or element of the complex projective line (Riemann sphere) to its inverse. Beware of the overloading: the equality (-1ℂ̅‘0) = ∞ is to be understood in the complex projective line, but 0 as an extended complex number does not have an inverse, which we can state as (-1ℂ̅‘0) ∉ ℂ̅. Note that this definition relies on df-bj-mulc 35417, which does not bypass ordinary complex multiplication, but defines extended complex multiplication on top of it. Therefore, we could have used directly / instead of (... ·ℂ̅ ...). (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
df-bj-invc -1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-bj-invc
StepHypRef Expression
1 cinvc 35418 . 2 class -1ℂ̅
2 vx . . 3 setvar 𝑥
3 cccbar 35386 . . . 4 class ℂ̅
4 ccchat 35403 . . . 4 class ℂ̂
53, 4cun 3885 . . 3 class (ℂ̅ ∪ ℂ̂)
62cv 1538 . . . . 5 class 𝑥
7 cc0 10871 . . . . 5 class 0
86, 7wceq 1539 . . . 4 wff 𝑥 = 0
9 cinfty 35401 . . . 4 class
10 cc 10869 . . . . . 6 class
116, 10wcel 2106 . . . . 5 wff 𝑥 ∈ ℂ
12 vy . . . . . . . . 9 setvar 𝑦
1312cv 1538 . . . . . . . 8 class 𝑦
14 cmulc 35416 . . . . . . . 8 class ·ℂ̅
156, 13, 14co 7275 . . . . . . 7 class (𝑥 ·ℂ̅ 𝑦)
16 c1 10872 . . . . . . 7 class 1
1715, 16wceq 1539 . . . . . 6 wff (𝑥 ·ℂ̅ 𝑦) = 1
1817, 12, 10crio 7231 . . . . 5 class (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1)
1911, 18, 7cif 4459 . . . 4 class if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0)
208, 9, 19cif 4459 . . 3 class if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0))
212, 5, 20cmpt 5157 . 2 class (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0)))
221, 21wceq 1539 1 wff -1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0)))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator