Detailed syntax breakdown of Definition df-bj-invc
| Step | Hyp | Ref
| Expression |
| 1 | | cinvc 37226 |
. 2
class
-1ℂ̅ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cccbar 37194 |
. . . 4
class
ℂ̅ |
| 4 | | ccchat 37211 |
. . . 4
class
ℂ̂ |
| 5 | 3, 4 | cun 3948 |
. . 3
class
(ℂ̅ ∪ ℂ̂) |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 7 | | cc0 11151 |
. . . . 5
class
0 |
| 8 | 6, 7 | wceq 1540 |
. . . 4
wff 𝑥 = 0 |
| 9 | | cinfty 37209 |
. . . 4
class
∞ |
| 10 | | cc 11149 |
. . . . . 6
class
ℂ |
| 11 | 6, 10 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ ℂ |
| 12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 13 | 12 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 14 | | cmulc 37224 |
. . . . . . . 8
class
·ℂ̅ |
| 15 | 6, 13, 14 | co 7429 |
. . . . . . 7
class (𝑥 ·ℂ̅
𝑦) |
| 16 | | c1 11152 |
. . . . . . 7
class
1 |
| 17 | 15, 16 | wceq 1540 |
. . . . . 6
wff (𝑥 ·ℂ̅
𝑦) = 1 |
| 18 | 17, 12, 10 | crio 7385 |
. . . . 5
class
(℩𝑦
∈ ℂ (𝑥
·ℂ̅ 𝑦) = 1) |
| 19 | 11, 18, 7 | cif 4524 |
. . . 4
class if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
·ℂ̅ 𝑦) = 1), 0) |
| 20 | 8, 9, 19 | cif 4524 |
. . 3
class if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
·ℂ̅ 𝑦) = 1), 0)) |
| 21 | 2, 5, 20 | cmpt 5223 |
. 2
class (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅
𝑦) = 1),
0))) |
| 22 | 1, 21 | wceq 1540 |
1
wff
-1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂)
↦ if(𝑥 = 0, ∞,
if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
·ℂ̅ 𝑦) = 1), 0))) |