Detailed syntax breakdown of Definition df-bj-invc
Step | Hyp | Ref
| Expression |
1 | | cinvc 35345 |
. 2
class
-1ℂ̅ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cccbar 35313 |
. . . 4
class
ℂ̅ |
4 | | ccchat 35330 |
. . . 4
class
ℂ̂ |
5 | 3, 4 | cun 3881 |
. . 3
class
(ℂ̅ ∪ ℂ̂) |
6 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
7 | | cc0 10802 |
. . . . 5
class
0 |
8 | 6, 7 | wceq 1539 |
. . . 4
wff 𝑥 = 0 |
9 | | cinfty 35328 |
. . . 4
class
∞ |
10 | | cc 10800 |
. . . . . 6
class
ℂ |
11 | 6, 10 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ ℂ |
12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . . 8
class 𝑦 |
14 | | cmulc 35343 |
. . . . . . . 8
class
·ℂ̅ |
15 | 6, 13, 14 | co 7255 |
. . . . . . 7
class (𝑥 ·ℂ̅
𝑦) |
16 | | c1 10803 |
. . . . . . 7
class
1 |
17 | 15, 16 | wceq 1539 |
. . . . . 6
wff (𝑥 ·ℂ̅
𝑦) = 1 |
18 | 17, 12, 10 | crio 7211 |
. . . . 5
class
(℩𝑦
∈ ℂ (𝑥
·ℂ̅ 𝑦) = 1) |
19 | 11, 18, 7 | cif 4456 |
. . . 4
class if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
·ℂ̅ 𝑦) = 1), 0) |
20 | 8, 9, 19 | cif 4456 |
. . 3
class if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
·ℂ̅ 𝑦) = 1), 0)) |
21 | 2, 5, 20 | cmpt 5153 |
. 2
class (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅
𝑦) = 1),
0))) |
22 | 1, 21 | wceq 1539 |
1
wff
-1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂)
↦ if(𝑥 = 0, ∞,
if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
·ℂ̅ 𝑦) = 1), 0))) |