Detailed syntax breakdown of Definition df-bj-mulc
| Step | Hyp | Ref
| Expression |
| 1 | | cmulc 37224 |
. 2
class
·ℂ̅ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cccbar 37194 |
. . . . 5
class
ℂ̅ |
| 4 | 3, 3 | cxp 5681 |
. . . 4
class
(ℂ̅ × ℂ̅) |
| 5 | | ccchat 37211 |
. . . . 5
class
ℂ̂ |
| 6 | 5, 5 | cxp 5681 |
. . . 4
class
(ℂ̂ × ℂ̂) |
| 7 | 4, 6 | cun 3948 |
. . 3
class
((ℂ̅ × ℂ̅) ∪ (ℂ̂ ×
ℂ̂)) |
| 8 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 9 | | c1st 8008 |
. . . . . . 7
class
1st |
| 10 | 8, 9 | cfv 6559 |
. . . . . 6
class
(1st ‘𝑥) |
| 11 | | cc0 11151 |
. . . . . 6
class
0 |
| 12 | 10, 11 | wceq 1540 |
. . . . 5
wff
(1st ‘𝑥) = 0 |
| 13 | | c2nd 8009 |
. . . . . . 7
class
2nd |
| 14 | 8, 13 | cfv 6559 |
. . . . . 6
class
(2nd ‘𝑥) |
| 15 | 14, 11 | wceq 1540 |
. . . . 5
wff
(2nd ‘𝑥) = 0 |
| 16 | 12, 15 | wo 848 |
. . . 4
wff
((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0) |
| 17 | | cinfty 37209 |
. . . . . . 7
class
∞ |
| 18 | 10, 17 | wceq 1540 |
. . . . . 6
wff
(1st ‘𝑥) = ∞ |
| 19 | 14, 17 | wceq 1540 |
. . . . . 6
wff
(2nd ‘𝑥) = ∞ |
| 20 | 18, 19 | wo 848 |
. . . . 5
wff
((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞) |
| 21 | | cc 11149 |
. . . . . . . 8
class
ℂ |
| 22 | 21, 21 | cxp 5681 |
. . . . . . 7
class (ℂ
× ℂ) |
| 23 | 8, 22 | wcel 2108 |
. . . . . 6
wff 𝑥 ∈ (ℂ ×
ℂ) |
| 24 | | cmul 11156 |
. . . . . . 7
class
· |
| 25 | 10, 14, 24 | co 7429 |
. . . . . 6
class
((1st ‘𝑥) · (2nd ‘𝑥)) |
| 26 | | carg 37222 |
. . . . . . . . . 10
class
Arg |
| 27 | 10, 26 | cfv 6559 |
. . . . . . . . 9
class
(Arg‘(1st ‘𝑥)) |
| 28 | 14, 26 | cfv 6559 |
. . . . . . . . 9
class
(Arg‘(2nd ‘𝑥)) |
| 29 | | caddcc 37216 |
. . . . . . . . 9
class
+ℂ̅ |
| 30 | 27, 28, 29 | co 7429 |
. . . . . . . 8
class
((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) |
| 31 | | ctau 16234 |
. . . . . . . 8
class
τ |
| 32 | | cdiv 11916 |
. . . . . . . 8
class
/ |
| 33 | 30, 31, 32 | co 7429 |
. . . . . . 7
class
(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ) |
| 34 | | cinftyexpitau 37177 |
. . . . . . 7
class
+∞eiτ |
| 35 | 33, 34 | cfv 6559 |
. . . . . 6
class
(+∞eiτ‘(((Arg‘(1st
‘𝑥))
+ℂ̅ (Arg‘(2nd ‘𝑥))) / τ)) |
| 36 | 23, 25, 35 | cif 4524 |
. . . . 5
class if(𝑥 ∈ (ℂ ×
ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ))) |
| 37 | 20, 17, 36 | cif 4524 |
. . . 4
class
if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ ×
ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))) |
| 38 | 16, 11, 37 | cif 4524 |
. . 3
class
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ))))) |
| 39 | 2, 7, 38 | cmpt 5223 |
. 2
class (𝑥 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))))) |
| 40 | 1, 39 | wceq 1540 |
1
wff
·ℂ̅ = (𝑥 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))))) |