Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mulc Structured version   Visualization version   GIF version

Definition df-bj-mulc 35396
Description: Define the multiplication of extended complex numbers and of the complex projective line (Riemann sphere). In our convention, a product with 0 is 0, even when the other factor is infinite. An alternate convention leaves products of 0 with an infinite number undefined since the multiplication is not continuous at these points. Note that our convention entails (0 / 0) = 0 (given df-bj-invc 35398).

Note that this definition uses · and Arg and /. Indeed, it would be contrived to bypass ordinary complex multiplication, and the present two-step definition looks like a good compromise. (Contributed by BJ, 22-Jun-2019.)

Assertion
Ref Expression
df-bj-mulc ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st𝑥) = 0 ∨ (2nd𝑥) = 0), 0, if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))))))

Detailed syntax breakdown of Definition df-bj-mulc
StepHypRef Expression
1 cmulc 35395 . 2 class ·ℂ̅
2 vx . . 3 setvar 𝑥
3 cccbar 35365 . . . . 5 class ℂ̅
43, 3cxp 5586 . . . 4 class (ℂ̅ × ℂ̅)
5 ccchat 35382 . . . . 5 class ℂ̂
65, 5cxp 5586 . . . 4 class (ℂ̂ × ℂ̂)
74, 6cun 3889 . . 3 class ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂))
82cv 1540 . . . . . . 7 class 𝑥
9 c1st 7815 . . . . . . 7 class 1st
108, 9cfv 6430 . . . . . 6 class (1st𝑥)
11 cc0 10855 . . . . . 6 class 0
1210, 11wceq 1541 . . . . 5 wff (1st𝑥) = 0
13 c2nd 7816 . . . . . . 7 class 2nd
148, 13cfv 6430 . . . . . 6 class (2nd𝑥)
1514, 11wceq 1541 . . . . 5 wff (2nd𝑥) = 0
1612, 15wo 843 . . . 4 wff ((1st𝑥) = 0 ∨ (2nd𝑥) = 0)
17 cinfty 35380 . . . . . . 7 class
1810, 17wceq 1541 . . . . . 6 wff (1st𝑥) = ∞
1914, 17wceq 1541 . . . . . 6 wff (2nd𝑥) = ∞
2018, 19wo 843 . . . . 5 wff ((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞)
21 cc 10853 . . . . . . . 8 class
2221, 21cxp 5586 . . . . . . 7 class (ℂ × ℂ)
238, 22wcel 2109 . . . . . 6 wff 𝑥 ∈ (ℂ × ℂ)
24 cmul 10860 . . . . . . 7 class ·
2510, 14, 24co 7268 . . . . . 6 class ((1st𝑥) · (2nd𝑥))
26 carg 35393 . . . . . . . . . 10 class Arg
2710, 26cfv 6430 . . . . . . . . 9 class (Arg‘(1st𝑥))
2814, 26cfv 6430 . . . . . . . . 9 class (Arg‘(2nd𝑥))
29 caddcc 35387 . . . . . . . . 9 class +ℂ̅
3027, 28, 29co 7268 . . . . . . . 8 class ((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥)))
31 ctau 15892 . . . . . . . 8 class τ
32 cdiv 11615 . . . . . . . 8 class /
3330, 31, 32co 7268 . . . . . . 7 class (((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ)
34 cinftyexpitau 35348 . . . . . . 7 class +∞e
3533, 34cfv 6430 . . . . . 6 class (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))
3623, 25, 35cif 4464 . . . . 5 class if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ)))
3720, 17, 36cif 4464 . . . 4 class if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))))
3816, 11, 37cif 4464 . . 3 class if(((1st𝑥) = 0 ∨ (2nd𝑥) = 0), 0, if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ)))))
392, 7, 38cmpt 5161 . 2 class (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st𝑥) = 0 ∨ (2nd𝑥) = 0), 0, if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))))))
401, 39wceq 1541 1 wff ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st𝑥) = 0 ∨ (2nd𝑥) = 0), 0, if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator