Detailed syntax breakdown of Definition df-bj-mulc
Step | Hyp | Ref
| Expression |
1 | | cmulc 35395 |
. 2
class
·ℂ̅ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cccbar 35365 |
. . . . 5
class
ℂ̅ |
4 | 3, 3 | cxp 5586 |
. . . 4
class
(ℂ̅ × ℂ̅) |
5 | | ccchat 35382 |
. . . . 5
class
ℂ̂ |
6 | 5, 5 | cxp 5586 |
. . . 4
class
(ℂ̂ × ℂ̂) |
7 | 4, 6 | cun 3889 |
. . 3
class
((ℂ̅ × ℂ̅) ∪ (ℂ̂ ×
ℂ̂)) |
8 | 2 | cv 1540 |
. . . . . . 7
class 𝑥 |
9 | | c1st 7815 |
. . . . . . 7
class
1st |
10 | 8, 9 | cfv 6430 |
. . . . . 6
class
(1st ‘𝑥) |
11 | | cc0 10855 |
. . . . . 6
class
0 |
12 | 10, 11 | wceq 1541 |
. . . . 5
wff
(1st ‘𝑥) = 0 |
13 | | c2nd 7816 |
. . . . . . 7
class
2nd |
14 | 8, 13 | cfv 6430 |
. . . . . 6
class
(2nd ‘𝑥) |
15 | 14, 11 | wceq 1541 |
. . . . 5
wff
(2nd ‘𝑥) = 0 |
16 | 12, 15 | wo 843 |
. . . 4
wff
((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0) |
17 | | cinfty 35380 |
. . . . . . 7
class
∞ |
18 | 10, 17 | wceq 1541 |
. . . . . 6
wff
(1st ‘𝑥) = ∞ |
19 | 14, 17 | wceq 1541 |
. . . . . 6
wff
(2nd ‘𝑥) = ∞ |
20 | 18, 19 | wo 843 |
. . . . 5
wff
((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞) |
21 | | cc 10853 |
. . . . . . . 8
class
ℂ |
22 | 21, 21 | cxp 5586 |
. . . . . . 7
class (ℂ
× ℂ) |
23 | 8, 22 | wcel 2109 |
. . . . . 6
wff 𝑥 ∈ (ℂ ×
ℂ) |
24 | | cmul 10860 |
. . . . . . 7
class
· |
25 | 10, 14, 24 | co 7268 |
. . . . . 6
class
((1st ‘𝑥) · (2nd ‘𝑥)) |
26 | | carg 35393 |
. . . . . . . . . 10
class
Arg |
27 | 10, 26 | cfv 6430 |
. . . . . . . . 9
class
(Arg‘(1st ‘𝑥)) |
28 | 14, 26 | cfv 6430 |
. . . . . . . . 9
class
(Arg‘(2nd ‘𝑥)) |
29 | | caddcc 35387 |
. . . . . . . . 9
class
+ℂ̅ |
30 | 27, 28, 29 | co 7268 |
. . . . . . . 8
class
((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) |
31 | | ctau 15892 |
. . . . . . . 8
class
τ |
32 | | cdiv 11615 |
. . . . . . . 8
class
/ |
33 | 30, 31, 32 | co 7268 |
. . . . . . 7
class
(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ) |
34 | | cinftyexpitau 35348 |
. . . . . . 7
class
+∞eiτ |
35 | 33, 34 | cfv 6430 |
. . . . . 6
class
(+∞eiτ‘(((Arg‘(1st
‘𝑥))
+ℂ̅ (Arg‘(2nd ‘𝑥))) / τ)) |
36 | 23, 25, 35 | cif 4464 |
. . . . 5
class if(𝑥 ∈ (ℂ ×
ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ))) |
37 | 20, 17, 36 | cif 4464 |
. . . 4
class
if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ ×
ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))) |
38 | 16, 11, 37 | cif 4464 |
. . 3
class
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ))))) |
39 | 2, 7, 38 | cmpt 5161 |
. 2
class (𝑥 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))))) |
40 | 1, 39 | wceq 1541 |
1
wff
·ℂ̅ = (𝑥 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))))) |