![]() |
Metamath
Proof Explorer Theorem List (p. 362 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | wl-eutf 36101 | Closed form of eu6 2567 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | ||
Theorem | wl-euequf 36102 | euequ 2590 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) | ||
Theorem | wl-mo2t 36103* | Closed form of mof 2556. (Contributed by Wolf Lammen, 18-Aug-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Theorem | wl-mo3t 36104* | Closed form of mo3 2557. (Contributed by Wolf Lammen, 18-Aug-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
Theorem | wl-sb8eut 36105 | Substitution of variable in universal quantifier. Closed form of sb8eu 2593. (Contributed by Wolf Lammen, 11-Aug-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
Theorem | wl-sb8mot 36106 |
Substitution of variable in universal quantifier. Closed form of
sb8mo 2594.
This theorem relates to wl-mo3t 36104, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2261 and sbco 2505. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 36104 in a simple fashion, unfortunately only if 𝑥 and 𝑦 are known to be distinct. To avoid any hassle with distinctors, we prefer to derive this theorem independently, ignoring the close connection between both theorems. From an educational standpoint, one would assume wl-mo3t 36104 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 11-Aug-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
Theorem | wl-issetft 36107 | A closed form of issetf 3460. The proof here is a modification of a subproof in vtoclgft 3510, where it could be used to shorten the proof. (Contributed by Wolf Lammen, 25-Jan-2025.) |
⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | ||
Theorem | wl-axc11rc11 36108 |
Proving axc11r 2364 from axc11 2428. The hypotheses are two instances of
axc11 2428 used in the proof here. Some systems
introduce axc11 2428 as an
axiom, see for example System S2 in
https://us.metamath.org/downloads/finiteaxiom.pdf 2428.
By contrast, this database sees the variant axc11r 2364, directly derived from ax-12 2171, as foundational. Later axc11 2428 is proven somewhat trickily, requiring ax-10 2137 and ax-13 2370, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.) |
⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)) & ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Axiom | ax-wl-11v 36109* | Version of ax-11 2154 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 2154. It will later be converted into a theorem directly based on ax-11 2154. (Contributed by Wolf Lammen, 28-Jun-2019.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | wl-ax11-lem1 36110 | A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑦 𝑦 = 𝑧)) | ||
Theorem | wl-ax11-lem2 36111* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦) | ||
Theorem | wl-ax11-lem3 36112* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑢 𝑢 = 𝑦) | ||
Theorem | wl-ax11-lem4 36113* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ Ⅎ𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | wl-ax11-lem5 36114 | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ (∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) | ||
Theorem | wl-ax11-lem6 36115* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) | ||
Theorem | wl-ax11-lem7 36116 | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑)) | ||
Theorem | wl-ax11-lem8 36117* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥𝜑)) | ||
Theorem | wl-ax11-lem9 36118 | The easy part when 𝑥 coincides with 𝑦. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) | ||
Theorem | wl-ax11-lem10 36119* | We now have prepared everything. The unwanted variable 𝑢 is just in one place left. pm2.61 191 can be used in conjunction with wl-ax11-lem9 36118 to eliminate the second antecedent. Missing is something along the lines of ax-6 1971, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.) |
⊢ (∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑))) | ||
Theorem | wl-clabv 36120* |
Variant of df-clab 2709, where the element 𝑥 is required to be
disjoint from the class it is taken from. This restriction meets
similar ones found in other definitions and axioms like ax-ext 2702,
df-clel 2809 and df-cleq 2723. 𝑥 ∈ 𝐴 with 𝐴 depending on 𝑥 can
be the source of side effects, that you rather want to be aware of. So
here we eliminate one possible way of letting this slip in instead.
An expression 𝑥 ∈ 𝐴 with 𝑥, 𝐴 not disjoint, is now only introduced either via ax-8 2108, ax-9 2116, or df-clel 2809. Theorem cleljust 2115 shows that a possible choice does not matter. The original df-clab 2709 can be rederived, see wl-dfclab 36121. In an implementation this theorem is the only user of df-clab. (Contributed by NM, 26-May-1993.) Element and class are disjoint. (Revised by Wolf Lammen, 31-May-2023.) |
⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
Theorem | wl-dfclab 36121 | Rederive df-clab 2709 from wl-clabv 36120. (Contributed by Wolf Lammen, 31-May-2023.) (Proof modification is discouraged.) |
⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
Theorem | wl-clabtv 36122* | Using class abstraction in a context, requiring 𝑥 and 𝜑 disjoint, but based on fewer axioms than wl-clabt 36123. (Contributed by Wolf Lammen, 29-May-2023.) |
⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
Theorem | wl-clabt 36123 | Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 36122. (Contributed by Wolf Lammen, 29-May-2023.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
Theorem | rabiun 36124* | Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
Theorem | iundif1 36125* | Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.) |
⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) | ||
Theorem | imadifss 36126 | The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) | ||
Theorem | cureq 36127 | Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) | ||
Theorem | unceq 36128 | Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ (𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵) | ||
Theorem | curf 36129 | Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → curry 𝐹:𝐴⟶(𝐶 ↑m 𝐵)) | ||
Theorem | uncf 36130 | Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ (𝐹:𝐴⟶(𝐶 ↑m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶) | ||
Theorem | curfv 36131 | Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
Theorem | uncov 36132 | Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹‘𝐴)‘𝐵)) | ||
Theorem | curunc 36133 | Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ ((𝐹:𝐴⟶(𝐶 ↑m 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹) | ||
Theorem | unccur 36134 | Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.) |
⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → uncurry curry 𝐹 = 𝐹) | ||
Theorem | phpreu 36135* | Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
Theorem | finixpnum 36136* | A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ dom card) → X𝑥 ∈ 𝐴 𝐵 ∈ dom card) | ||
Theorem | fin2solem 36137* | Lemma for fin2so 36138. (Contributed by Brendan Leahy, 29-Jun-2019.) |
⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → (𝑦𝑅𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) | ||
Theorem | fin2so 36138 | Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.) |
⊢ ((𝐴 ∈ FinII ∧ 𝑅 Or 𝐴) → 𝐴 ∈ Fin) | ||
Theorem | ltflcei 36139 | Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ 𝐴 < -(⌊‘-𝐵))) | ||
Theorem | leceifl 36140 | Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (⌊‘𝐵))) | ||
Theorem | sin2h 36141 | Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.) |
⊢ (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2))) | ||
Theorem | cos2h 36142 | Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.) |
⊢ (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2))) | ||
Theorem | tan2h 36143 | Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.) |
⊢ (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))) | ||
Theorem | lindsadd 36144 | In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.) |
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊)) | ||
Theorem | lindsdom 36145 | A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) | ||
Theorem | lindsenlbs 36146 | A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) | ||
Theorem | matunitlindflem1 36147 | One direction of matunitlindf 36149. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) | ||
Theorem | matunitlindflem2 36148 | One direction of matunitlindf 36149. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) | ||
Theorem | matunitlindf 36149 | A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.) |
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) | ||
Theorem | ptrest 36150* | Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((∏t‘𝐹) ↾t X𝑘 ∈ 𝐴 𝑆) = (∏t‘(𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) ↾t 𝑆)))) | ||
Theorem | ptrecube 36151* | Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑃 ∈ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃‘𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) | ||
Theorem | poimirlem1 36152* | Lemma for poimir 36184- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) | ||
Theorem | poimirlem2 36153* | Lemma for poimir 36184- consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((0...𝑁) ∖ {𝑉})) ⇒ ⊢ (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛)) | ||
Theorem | poimirlem3 36154* | Lemma for poimir 36184 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) & ⊢ (𝜑 → 𝑇:(1...𝑀)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑀)–1-1-onto→(1...𝑀)) ⇒ ⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f + ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) | ||
Theorem | poimirlem4 36155* | Lemma for poimir 36184 connecting the admissible faces on the back face of the (𝑀 + 1)-cube to admissible simplices in the 𝑀-cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) | ||
Theorem | poimirlem5 36156* | Lemma for poimir 36184 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 0 < (2nd ‘𝑇)) ⇒ ⊢ (𝜑 → (𝐹‘0) = (1st ‘(1st ‘𝑇))) | ||
Theorem | poimirlem6 36157* | Lemma for poimir 36184 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ (1...((2nd ‘𝑇) − 1))) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
Theorem | poimirlem7 36158* | Lemma for poimir 36184, similar to poimirlem6 36157, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((((2nd ‘𝑇) + 1) + 1)...𝑁)) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 2))‘𝑛) ≠ ((𝐹‘(𝑀 − 1))‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
Theorem | poimirlem8 36159* | Lemma for poimir 36184, establishing that away from the opposite vertex the walks in poimirlem9 36160 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑈)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ((2nd ‘(1st ‘𝑇)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) | ||
Theorem | poimirlem9 36160* | Lemma for poimir 36184, establishing the two walks that yield a given face when the opposite vertex is neither first nor last. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) ≠ (2nd ‘(1st ‘𝑇))) ⇒ ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) = ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))) | ||
Theorem | poimirlem10 36161* | Lemma for poimir 36184 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st ‘𝑇))) | ||
Theorem | poimirlem11 36162* | Lemma for poimir 36184 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑈) = 0) & ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st ‘𝑈)) “ (1...𝑀))) | ||
Theorem | poimirlem12 36163* | Lemma for poimir 36184 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑈) = 𝑁) & ⊢ (𝜑 → 𝑀 ∈ (0...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st ‘𝑈)) “ (1...𝑀))) | ||
Theorem | poimirlem13 36164* | Lemma for poimir 36184- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) ⇒ ⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 0) | ||
Theorem | poimirlem14 36165* | Lemma for poimir 36184- for at most one simplex associated with a shared face is the opposite vertex last on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) ⇒ ⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 𝑁) | ||
Theorem | poimirlem15 36166* | Lemma for poimir 36184, that the face in poimirlem22 36173 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → 〈〈(1st ‘(1st ‘𝑇)), ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))〉, (2nd ‘𝑇)〉 ∈ 𝑆) | ||
Theorem | poimirlem16 36167* | Lemma for poimir 36184 establishing the vertices of the simplex of poimirlem17 36168. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st ‘𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))) | ||
Theorem | poimirlem17 36168* | Lemma for poimir 36184 establishing existence for poimirlem18 36169. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
Theorem | poimirlem18 36169* | Lemma for poimir 36184 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
Theorem | poimirlem19 36170* | Lemma for poimir 36184 establishing the vertices of the simplex in poimirlem20 36171. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st ‘𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) | ||
Theorem | poimirlem20 36171* | Lemma for poimir 36184 establishing existence for poimirlem21 36172. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
Theorem | poimirlem21 36172* | Lemma for poimir 36184 stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
Theorem | poimirlem22 36173* | Lemma for poimir 36184, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
Theorem | poimirlem23 36174* | Lemma for poimir 36184, two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) ⇒ ⊢ (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) | ||
Theorem | poimirlem24 36175* | Lemma for poimir 36184, two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁))))) | ||
Theorem | poimirlem25 36176* | Lemma for poimir 36184 stating that for a given simplex such that no vertex maps to 𝑁, the number of admissible faces is even. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ≠ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ⇒ ⊢ (𝜑 → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) | ||
Theorem | poimirlem26 36177* | Lemma for poimir 36184 showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) ⇒ ⊢ (𝜑 → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) | ||
Theorem | poimirlem27 36178* | Lemma for poimir 36184 showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) ⇒ ⊢ (𝜑 → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}))) | ||
Theorem | poimirlem28 36179* | Lemma for poimir 36184, a variant of Sperner's lemma. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) | ||
Theorem | poimirlem29 36180* | Lemma for poimir 36184 connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ 𝑋 = ((𝐹‘(((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛) & ⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋) ⇒ ⊢ (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝐶‘𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝐶 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) | ||
Theorem | poimirlem30 36181* | Lemma for poimir 36184 combining poimirlem29 36180 with bwth 22798. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ 𝑋 = ((𝐹‘(((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛) & ⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) | ||
Theorem | poimirlem31 36182* | Lemma for poimir 36184, assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 36181 and poimirlem28 36179. Equation (2) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) & ⊢ 𝑃 = ((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) & ⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < )) ⇒ ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) | ||
Theorem | poimirlem32 36183* | Lemma for poimir 36184, combining poimirlem28 36179, poimirlem30 36181, and poimirlem31 36182 to get Equation (1) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) | ||
Theorem | poimir 36184* | Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 (𝐹‘𝑐) = ((1...𝑁) × {0})) | ||
Theorem | broucube 36185* | Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn (𝑅 ↾t 𝐼))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 𝑐 = (𝐹‘𝑐)) | ||
Theorem | heicant 36186 | Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → (MetOpen‘𝐶) ∈ Comp) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷))) | ||
Theorem | opnmbllem0 36187* | Lemma for ismblfin 36192; could also be used to shorten proof of opnmbllem 25002. (Contributed by Brendan Leahy, 13-Jul-2018.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) → ∪ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴) | ||
Theorem | mblfinlem1 36188* | Lemma for ismblfin 36192, ordering the sets of dyadic intervals that are antichains under subset and whose unions are contained entirely in 𝐴. (Contributed by Brendan Leahy, 13-Jul-2018.) |
⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) | ||
Theorem | mblfinlem2 36189* | Lemma for ismblfin 36192, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.) |
⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) | ||
Theorem | mblfinlem3 36190* | The difference between two sets measurable by the criterion in ismblfin 36192 is itself measurable by the same. Corollary 0.3 of [Viaclovsky7] p. 3. (Contributed by Brendan Leahy, 25-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.) |
⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐵 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) → sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴 ∖ 𝐵) ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘(𝐴 ∖ 𝐵))) | ||
Theorem | mblfinlem4 36191* | Backward direction of ismblfin 36192. (Contributed by Brendan Leahy, 28-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.) |
⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) | ||
Theorem | ismblfin 36192* | Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.) |
⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) | ||
Theorem | ovoliunnfl 36193* | ovoliun 24906 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.) |
⊢ ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓‘𝑛) ⊆ ℝ ∧ (vol*‘(𝑓‘𝑛)) ∈ ℝ)) → (vol*‘∪ 𝑚 ∈ ℕ (𝑓‘𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓‘𝑚)))), ℝ*, < )) ⇒ ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
Theorem | ex-ovoliunnfl 36194* | Demonstration of ovoliunnfl 36193. (Contributed by Brendan Leahy, 21-Nov-2017.) |
⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
Theorem | voliunnfl 36195* | voliun 24955 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.) |
⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓‘𝑛))) & ⊢ ((∀𝑛 ∈ ℕ ((𝑓‘𝑛) ∈ dom vol ∧ (vol‘(𝑓‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛)) → (vol‘∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) = sup(ran 𝑆, ℝ*, < )) ⇒ ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
Theorem | volsupnfl 36196* | volsup 24957 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018.) |
⊢ ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘∪ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < )) ⇒ ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
Theorem | mbfresfi 36197* | Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) & ⊢ (𝜑 → ∪ 𝑆 = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfposadd 36198* | If the sum of two measurable functions is measurable, the sum of their nonnegative parts is measurable. (Contributed by Brendan Leahy, 2-Apr-2018.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ MblFn) | ||
Theorem | cnambfre 36199 | A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ ((◡(((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn) | ||
Theorem | dvtanlem 36200 | Lemma for dvtan 36201- the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (◡cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |