| Metamath
Proof Explorer Theorem List (p. 362 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | ccgr3 36101 | Declare the syntax for the three place congruence predicate. |
| class Cgr3 | ||
| Syntax | ccolin 36102 | Declare the syntax for the colinearity predicate. |
| class Colinear | ||
| Syntax | cfs 36103 | Declare the syntax for the five segment predicate. |
| class FiveSeg | ||
| Definition | df-colinear 36104* | The colinearity predicate states that the three points in its arguments sit on one line. Definition 4.10 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 25-Oct-2013.) |
| ⊢ Colinear = ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} | ||
| Definition | df-ifs 36105* | The inner five segment configuration is an abbreviation for another congruence condition. See brifs 36108 and ifscgr 36109 for how it is used. Definition 4.1 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ InnerFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑐〉Cgr〈𝑥, 𝑧〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑐, 𝑑〉Cgr〈𝑧, 𝑤〉)))} | ||
| Definition | df-cgr3 36106* | The three place congruence predicate. This is an abbreviation for saying that all three pair in a triple are congruent with each other. Three place form of Definition 4.4 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ Cgr3 = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ (〈𝑎, 𝑏〉Cgr〈𝑑, 𝑒〉 ∧ 〈𝑎, 𝑐〉Cgr〈𝑑, 𝑓〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑒, 𝑓〉))} | ||
| Definition | df-fs 36107* | The general five segment configuration is a generalization of the outer and inner five segment configurations. See brfs 36144 and fscgr 36145 for its use. Definition 4.15 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ FiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
| Theorem | brifs 36108 | Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐸, 𝐺〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)))) | ||
| Theorem | ifscgr 36109 | Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐺, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐺. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 27-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 → 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)) | ||
| Theorem | cgrsub 36110 | Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉)) | ||
| Theorem | brcgr3 36111 | Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉))) | ||
| Theorem | cgr3permute3 36112 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐵, 〈𝐶, 𝐴〉〉Cgr3〈𝐸, 〈𝐹, 𝐷〉〉)) | ||
| Theorem | cgr3permute1 36113 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐴, 〈𝐶, 𝐵〉〉Cgr3〈𝐷, 〈𝐹, 𝐸〉〉)) | ||
| Theorem | cgr3permute2 36114 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐵, 〈𝐴, 𝐶〉〉Cgr3〈𝐸, 〈𝐷, 𝐹〉〉)) | ||
| Theorem | cgr3permute4 36115 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐶, 〈𝐴, 𝐵〉〉Cgr3〈𝐹, 〈𝐷, 𝐸〉〉)) | ||
| Theorem | cgr3permute5 36116 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐶, 〈𝐵, 𝐴〉〉Cgr3〈𝐹, 〈𝐸, 𝐷〉〉)) | ||
| Theorem | cgr3tr4 36117 | Transitivity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐺, 〈𝐻, 𝐼〉〉) → 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐺, 〈𝐻, 𝐼〉〉)) | ||
| Theorem | cgr3com 36118 | Commutativity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉)) | ||
| Theorem | cgr3rflx 36119 | Identity law for three-place congruence. (Contributed by Scott Fenton, 6-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉) | ||
| Theorem | cgrxfr 36120* | A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) | ||
| Theorem | btwnxfr 36121 | A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) | ||
| Theorem | colinrel 36122 | Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Rel Colinear | ||
| Theorem | brcolinear2 36123* | Alternate colinearity binary relation. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑃 Colinear 〈𝑄, 𝑅〉 ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑅 ∈ (𝔼‘𝑛)) ∧ (𝑃 Btwn 〈𝑄, 𝑅〉 ∨ 𝑄 Btwn 〈𝑅, 𝑃〉 ∨ 𝑅 Btwn 〈𝑃, 𝑄〉)))) | ||
| Theorem | brcolinear 36124 | The binary relation form of the colinearity predicate. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | ||
| Theorem | colinearex 36125 | The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Colinear ∈ V | ||
| Theorem | colineardim1 36126 | If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ 𝑊)) → (𝐴 Colinear 〈𝐵, 𝐶〉 → 𝐴 ∈ (𝔼‘𝑁))) | ||
| Theorem | colinearperm1 36127 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐴 Colinear 〈𝐶, 𝐵〉)) | ||
| Theorem | colinearperm3 36128 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐶, 𝐴〉)) | ||
| Theorem | colinearperm2 36129 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐴, 𝐶〉)) | ||
| Theorem | colinearperm4 36130 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐴, 𝐵〉)) | ||
| Theorem | colinearperm5 36131 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐵, 𝐴〉)) | ||
| Theorem | colineartriv1 36132 | Trivial case of colinearity. Theorem 4.12 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Colinear 〈𝐴, 𝐵〉) | ||
| Theorem | colineartriv2 36133 | Trivial case of colinearity. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Colinear 〈𝐵, 𝐵〉) | ||
| Theorem | btwncolinear1 36134 | Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) | ||
| Theorem | btwncolinear2 36135 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐶, 𝐵〉)) | ||
| Theorem | btwncolinear3 36136 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐵 Colinear 〈𝐴, 𝐶〉)) | ||
| Theorem | btwncolinear4 36137 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐵 Colinear 〈𝐶, 𝐴〉)) | ||
| Theorem | btwncolinear5 36138 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐶 Colinear 〈𝐴, 𝐵〉)) | ||
| Theorem | btwncolinear6 36139 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐶 Colinear 〈𝐵, 𝐴〉)) | ||
| Theorem | colinearxfr 36140 | Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Colinear 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 𝐸 Colinear 〈𝐷, 𝐹〉)) | ||
| Theorem | lineext 36141* | Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) → ∃𝑓 ∈ (𝔼‘𝑁)〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝑓〉〉)) | ||
| Theorem | brofs2 36142 | Change some conditions for outer five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐸, 〈𝐹, 𝐺〉〉 ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
| Theorem | brifs2 36143 | Change some conditions for inner five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐸, 〈𝐹, 𝐺〉〉 ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)))) | ||
| Theorem | brfs 36144 | Binary relation form of the general five segment predicate. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 FiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ (𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐸, 〈𝐹, 𝐺〉〉 ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
| Theorem | fscgr 36145 | Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 FiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||
| Theorem | linecgr 36146 | Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) | ||
| Theorem | linecgrand 36147 | Deduction form of linecgr 36146. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝑃 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝑄 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ≠ 𝐵) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Colinear 〈𝐵, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉) | ||
| Theorem | lineid 36148 | Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐴, 𝐷〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐵, 𝐷〉)) → 𝐶 = 𝐷)) | ||
| Theorem | idinside 36149 | Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐴, 𝐷〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐵, 𝐷〉) → 𝐶 = 𝐷)) | ||
| Theorem | endofsegid 36150 | If 𝐴, 𝐵, and 𝐶 fall in order on a line, and 𝐴𝐵 and 𝐴𝐶 are congruent, then 𝐶 = 𝐵. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐴, 𝐵〉) → 𝐶 = 𝐵)) | ||
| Theorem | endofsegidand 36151 | Deduction form of endofsegid 36150. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐴, 𝐵〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐶〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐵 = 𝐶) | ||
| Theorem | btwnconn1lem1 36152 | Lemma for btwnconn1 36166. The next several lemmas introduce various properties of hypothetical points that end up eliminating alternatives to connectivity. We begin by showing a congruence property of those hypothetical points. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑋〉 ∧ 〈𝑑, 𝑋〉Cgr〈𝐷, 𝐵〉)))) → 〈𝐵, 𝑐〉Cgr〈𝑋, 𝐶〉) | ||
| Theorem | btwnconn1lem2 36153 | Lemma for btwnconn1 36166. Now, we show that two of the hypotheticals we introduced in the first lemma are identical. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑋〉 ∧ 〈𝑑, 𝑋〉Cgr〈𝐷, 𝐵〉)))) → 𝑋 = 𝑏) | ||
| Theorem | btwnconn1lem3 36154 | Lemma for btwnconn1 36166. Establish the next congruence in the series. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝐵, 𝑑〉Cgr〈𝑏, 𝐷〉) | ||
| Theorem | btwnconn1lem4 36155 | Lemma for btwnconn1 36166. Assuming 𝐶 ≠ 𝑐, we now attempt to force 𝐷 = 𝑑 from here out via a series of congruences. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | btwnconn1lem5 36156 | Lemma for btwnconn1 36166. Now, we introduce 𝐸, the intersection of 𝐶𝑐 and 𝐷𝑑. We begin by showing that it is the midpoint of 𝐶 and 𝑐. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉) | ||
| Theorem | btwnconn1lem6 36157 | Lemma for btwnconn1 36166. Next, we show that 𝐸 is the midpoint of 𝐷 and 𝑑. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉) | ||
| Theorem | btwnconn1lem7 36158 | Lemma for btwnconn1 36166. Under our assumptions, 𝐶 and 𝑑 are distinct. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 𝐶 ≠ 𝑑) | ||
| Theorem | btwnconn1lem8 36159 | Lemma for btwnconn1 36166. Now, we introduce the last three points used in the construction: 𝑃, 𝑄, and 𝑅 will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of 𝑅𝑃 and 𝐸𝑑. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑅, 𝑃〉Cgr〈𝐸, 𝑑〉) | ||
| Theorem | btwnconn1lem9 36160 | Lemma for btwnconn1 36166. Now, a quick use of transitivity to establish congruence on 𝑅𝑄 and 𝐸𝐷. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑅, 𝑄〉Cgr〈𝐸, 𝐷〉) | ||
| Theorem | btwnconn1lem10 36161 | Lemma for btwnconn1 36166. Now we establish a congruence that will give us 𝐷 = 𝑑 when we compute 𝑃 = 𝑄 later on. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑑, 𝐷〉Cgr〈𝑃, 𝑄〉) | ||
| Theorem | btwnconn1lem11 36162 | Lemma for btwnconn1 36166. Now, we establish that 𝐷 and 𝑄 are equidistant from 𝐶. (Contributed by Scott Fenton, 8-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝐷, 𝐶〉Cgr〈𝑄, 𝐶〉) | ||
| Theorem | btwnconn1lem12 36163 | Lemma for btwnconn1 36166. Using a long string of invocations of linecgr 36146, we show that 𝐷 = 𝑑. (Contributed by Scott Fenton, 9-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 𝐷 = 𝑑) | ||
| Theorem | btwnconn1lem13 36164 | Lemma for btwnconn1 36166. Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013.) |
| ⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → (𝐶 = 𝑐 ∨ 𝐷 = 𝑑)) | ||
| Theorem | btwnconn1lem14 36165 | Lemma for btwnconn1 36166. Final statement of the theorem when 𝐵 ≠ 𝐶. (Contributed by Scott Fenton, 9-Oct-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉))) → (𝐶 Btwn 〈𝐴, 𝐷〉 ∨ 𝐷 Btwn 〈𝐴, 𝐶〉)) | ||
| Theorem | btwnconn1 36166 | Connectitivy law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. (Contributed by Scott Fenton, 9-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉) → (𝐶 Btwn 〈𝐴, 𝐷〉 ∨ 𝐷 Btwn 〈𝐴, 𝐶〉))) | ||
| Theorem | btwnconn2 36167 | Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉) → (𝐶 Btwn 〈𝐵, 𝐷〉 ∨ 𝐷 Btwn 〈𝐵, 𝐶〉))) | ||
| Theorem | btwnconn3 36168 | Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | ||
| Theorem | midofsegid 36169 | If two points fall in the same place in the middle of a segment, then they are identical. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝐵〉 ∧ 𝐸 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐷〉Cgr〈𝐴, 𝐸〉) → 𝐷 = 𝐸)) | ||
| Theorem | segcon2 36170* | Generalization of axsegcon 28907. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 28907, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn 〈𝑄, 𝑥〉 ∨ 𝑥 Btwn 〈𝑄, 𝐴〉) ∧ 〈𝑄, 𝑥〉Cgr〈𝐵, 𝐶〉)) | ||
| Syntax | csegle 36171 | Declare the constant for the segment less than or equal to relationship. |
| class Seg≤ | ||
| Definition | df-segle 36172* | Define the segment length comparison relationship. This relationship expresses that the segment 𝐴𝐵 is no longer than 𝐶𝐷. In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ Seg≤ = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn 〈𝑐, 𝑑〉 ∧ 〈𝑎, 𝑏〉Cgr〈𝑐, 𝑦〉))} | ||
| Theorem | brsegle 36173* | Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) | ||
| Theorem | brsegle2 36174* | Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) | ||
| Theorem | seglecgr12im 36175 | Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉) → 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉)) | ||
| Theorem | seglecgr12 36176 | Substitution law for segment comparison under congruence. Biconditional version. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉))) | ||
| Theorem | seglerflx 36177 | Segment comparison is reflexive. Theorem 5.7 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉) | ||
| Theorem | seglemin 36178 | Any segment is at least as long as a degenerate segment. Theorem 5.11 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 𝐴〉 Seg≤ 〈𝐵, 𝐶〉) | ||
| Theorem | segletr 36179 | Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉 Seg≤ 〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐸, 𝐹〉)) | ||
| Theorem | segleantisym 36180 | Antisymmetry law for segment comparison. Theorem 5.9 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉 Seg≤ 〈𝐴, 𝐵〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | seglelin 36181 | Linearity law for segment comparison. Theorem 5.10 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∨ 〈𝐶, 𝐷〉 Seg≤ 〈𝐴, 𝐵〉)) | ||
| Theorem | btwnsegle 36182 | If 𝐵 falls between 𝐴 and 𝐶, then 𝐴𝐵 is no longer than 𝐴𝐶. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉)) | ||
| Theorem | colinbtwnle 36183 | Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉 ∧ 〈𝐵, 𝐶〉 Seg≤ 〈𝐴, 𝐶〉)))) | ||
| Syntax | coutsideof 36184 | Declare the syntax for the outside of constant. |
| class OutsideOf | ||
| Definition | df-outsideof 36185 | The outside of relationship. This relationship expresses that 𝑃, 𝐴, and 𝐵 fall on a line, but 𝑃 is not on the segment 𝐴𝐵. This definition is taken from theorem 6.4 of [Schwabhauser] p. 43, since it requires no dummy variables. (Contributed by Scott Fenton, 17-Oct-2013.) |
| ⊢ OutsideOf = ( Colinear ∖ Btwn ) | ||
| Theorem | broutsideof 36186 | Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) | ||
| Theorem | broutsideof2 36187 | Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ (𝐴 Btwn 〈𝑃, 𝐵〉 ∨ 𝐵 Btwn 〈𝑃, 𝐴〉)))) | ||
| Theorem | outsidene1 36188 | Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → 𝐴 ≠ 𝑃)) | ||
| Theorem | outsidene2 36189 | Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → 𝐵 ≠ 𝑃)) | ||
| Theorem | btwnoutside 36190 | A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ 𝐶 ≠ 𝑃) ∧ 𝑃 Btwn 〈𝐴, 𝐶〉) → (𝑃 Btwn 〈𝐵, 𝐶〉 ↔ 𝑃OutsideOf〈𝐴, 𝐵〉))) | ||
| Theorem | broutsideof3 36191* | Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐 ≠ 𝑃 ∧ 𝑃 Btwn 〈𝐴, 𝑐〉 ∧ 𝑃 Btwn 〈𝐵, 𝑐〉)))) | ||
| Theorem | outsideofrflx 36192 | Reflexivity of outsideness. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐴 ≠ 𝑃 → 𝑃OutsideOf〈𝐴, 𝐴〉)) | ||
| Theorem | outsideofcom 36193 | Commutativity law for outsideness. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ 𝑃OutsideOf〈𝐵, 𝐴〉)) | ||
| Theorem | outsideoftr 36194 | Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf〈𝐴, 𝐵〉 ∧ 𝑃OutsideOf〈𝐵, 𝐶〉) → 𝑃OutsideOf〈𝐴, 𝐶〉)) | ||
| Theorem | outsideofeq 36195 | Uniqueness law for OutsideOf. Analogue of segconeq 36075. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf〈𝑋, 𝑅〉 ∧ 〈𝐴, 𝑋〉Cgr〈𝐵, 𝐶〉) ∧ (𝐴OutsideOf〈𝑌, 𝑅〉 ∧ 〈𝐴, 𝑌〉Cgr〈𝐵, 𝐶〉)) → 𝑋 = 𝑌)) | ||
| Theorem | outsideofeu 36196* | Given a nondegenerate ray, there is a unique point congruent to the segment 𝐵𝐶 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf〈𝑥, 𝑅〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐵, 𝐶〉))) | ||
| Theorem | outsidele 36197 | Relate OutsideOf to Seg≤. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → (〈𝑃, 𝐴〉 Seg≤ 〈𝑃, 𝐵〉 ↔ 𝐴 Btwn 〈𝑃, 𝐵〉))) | ||
| Theorem | outsideofcol 36198 | Outside of implies colinearity. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑃OutsideOf〈𝑄, 𝑅〉 → 𝑃 Colinear 〈𝑄, 𝑅〉) | ||
| Syntax | cline2 36199 | Declare the constant for the line function. |
| class Line | ||
| Syntax | cray 36200 | Declare the constant for the ray function. |
| class Ray | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |