Home | Metamath
Proof Explorer Theorem List (p. 362 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | idlss 36101 | An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) | ||
Theorem | idlcl 36102 | An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝑋) | ||
Theorem | idl0cl 36103 | An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝐼) | ||
Theorem | idladdcl 36104 | An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) | ||
Theorem | idllmulcl 36105 | An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼) | ||
Theorem | idlrmulcl 36106 | An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) | ||
Theorem | idlnegcl 36107 | An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) | ||
Theorem | idlsubcl 36108 | An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) | ||
Theorem | rngoidl 36109 | A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) | ||
Theorem | 0idl 36110 | The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) | ||
Theorem | 1idl 36111 | Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) | ||
Theorem | 0rngo 36112 | In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) | ||
Theorem | divrngidl 36113 | The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋}) | ||
Theorem | intidl 36114 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∩ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | inidl 36115 | The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) | ||
Theorem | unichnidl 36116* | The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | keridl 36117 | The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑆) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (◡𝐹 “ {𝑍}) ∈ (Idl‘𝑅)) | ||
Theorem | pridlval 36118* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | ispridl 36119* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
Theorem | pridlidl 36120 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) | ||
Theorem | pridlnr 36121 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ≠ 𝑋) | ||
Theorem | pridl 36122* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)) | ||
Theorem | ispridl2 36123* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 36155 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) | ||
Theorem | maxidlval 36124* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) | ||
Theorem | ismaxidl 36125* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | ||
Theorem | maxidlidl 36126 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | ||
Theorem | maxidlnr 36127 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ 𝑋) | ||
Theorem | maxidlmax 36128 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) | ||
Theorem | maxidln1 36129 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) | ||
Theorem | maxidln0 36130 | A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) | ||
Syntax | cprrng 36131 | Extend class notation with the class of prime rings. |
class PrRing | ||
Syntax | cdmn 36132 | Extend class notation with the class of domains. |
class Dmn | ||
Definition | df-prrngo 36133 | Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | ||
Definition | df-dmn 36134 | Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ Dmn = (PrRing ∩ Com2) | ||
Theorem | isprrngo 36135 | The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) | ||
Theorem | prrngorngo 36136 | A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | ||
Theorem | smprngopr 36137 | A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing) | ||
Theorem | divrngpr 36138 | A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | ||
Theorem | isdmn 36139 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | ||
Theorem | isdmn2 36140 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | ||
Theorem | dmncrng 36141 | A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | ||
Theorem | dmnrngo 36142 | A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) | ||
Theorem | flddmn 36143 | A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) | ||
Syntax | cigen 36144 | Extend class notation with the ideal generation function. |
class IdlGen | ||
Definition | df-igen 36145* | Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | ||
Theorem | igenval 36146* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) | ||
Theorem | igenss 36147 | A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) | ||
Theorem | igenidl 36148 | The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) | ||
Theorem | igenmin 36149 | The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) | ||
Theorem | igenidl2 36150 | The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) | ||
Theorem | igenval2 36151* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗)))) | ||
Theorem | prnc 36152* | A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) | ||
Theorem | isfldidl 36153 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) | ||
Theorem | isfldidl2 36154 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) | ||
Theorem | ispridlc 36155* | The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | ||
Theorem | pridlc 36156 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) | ||
Theorem | pridlc2 36157 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) | ||
Theorem | pridlc3 36158 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) | ||
Theorem | isdmn3 36159* | The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) | ||
Theorem | dmnnzd 36160 | A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) | ||
Theorem | dmncan1 36161 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶)) | ||
Theorem | dmncan2 36162 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) | ||
The results in this section are mostly meant for being used by automatic proof building programs. As a result, they might appear less useful or meaningful than others to human beings. | ||
Theorem | efald2 36163 | A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ 𝜑 → ⊥) ⇒ ⊢ 𝜑 | ||
Theorem | notbinot1 36164 | Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (¬ 𝜑 ↔ 𝜓) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | bicontr 36165 | Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((¬ 𝜑 ↔ 𝜑) ↔ ⊥) | ||
Theorem | impor 36166 | An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) | ||
Theorem | orfa 36167 | The falsum ⊥ can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) | ||
Theorem | notbinot2 36168 | Commutation rule between negation and biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ 𝜓)) | ||
Theorem | biimpor 36169 | A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ↔ 𝜓) ∨ 𝜒)) | ||
Theorem | orfa1 36170 | Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ ⊥) → 𝜓) | ||
Theorem | orfa2 36171 | Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
Theorem | bifald 36172 | Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ ⊥)) | ||
Theorem | orsild 36173 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | orsird 36174 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | cnf1dd 36175 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ¬ 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | cnf2dd 36176 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ¬ 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | cnfn1dd 36177 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (¬ 𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | cnfn2dd 36178 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ ¬ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | or32dd 36179 | A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃) ∨ 𝜏))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) ∨ 𝜃))) | ||
Theorem | notornotel1 36180 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | notornotel2 36181 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | contrd 36182 | A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (¬ 𝜓 → 𝜒)) & ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | an12i 36183 | An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.) |
⊢ (𝜑 ∧ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 ∧ (𝜑 ∧ 𝜒)) | ||
Theorem | exmid2 36184 | An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ ((𝜓 ∧ 𝜑) → 𝜒) & ⊢ ((¬ 𝜓 ∧ 𝜂) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜂) → 𝜒) | ||
Theorem | selconj 36185 | An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜓 ∧ (𝜂 ∧ 𝜒))) | ||
Theorem | truconj 36186 | Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) | ||
Theorem | orel 36187 | An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ ((𝜓 ∧ 𝜂) → 𝜃) & ⊢ ((𝜒 ∧ 𝜌) → 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) | ||
Theorem | negel 36188 | An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜓 → 𝜒) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ⊥) | ||
Theorem | botel 36189 | An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | tradd 36190 | Add top ad a conjunct. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ (⊤ ∧ 𝜓)) | ||
Theorem | gm-sbtru 36191 | Substitution does not change truth. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊤ ↔ ⊤) | ||
Theorem | sbfal 36192 | Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊥ ↔ ⊥) | ||
Theorem | sbcani 36193 | Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) | ||
Theorem | sbcori 36194 | Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜂)) | ||
Theorem | sbcimi 36195 | Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜒 → 𝜂)) | ||
Theorem | sbcni 36196 | Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) | ||
Theorem | sbali 36197 | Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sbexi 36198 | Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | sbcalf 36199* | Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcexf 36200* | Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |