HomeHome Metamath Proof Explorer
Theorem List (p. 362 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 36101-36200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremidlss 36101 An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)
 
Theoremidlcl 36102 An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → 𝐴𝑋)
 
Theoremidl0cl 36103 An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑍 = (GId‘𝐺)       ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍𝐼)
 
Theoremidladdcl 36104 An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)       (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)
 
Theoremidllmulcl 36105 An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)
 
Theoremidlrmulcl 36106 An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼)
 
Theoremidlnegcl 36107 An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑁 = (inv‘𝐺)       (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → (𝑁𝐴) ∈ 𝐼)
 
Theoremidlsubcl 36108 An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐷 = ( /𝑔𝐺)       (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼)
 
Theoremrngoidl 36109 A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
 
Theorem0idl 36110 The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑍 = (GId‘𝐺)       (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
 
Theorem1idl 36111 Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐻)       ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
 
Theorem0rngo 36112 In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
 
Theoremdivrngidl 36113 The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})
 
Theoremintidl 36114 The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))
 
Theoreminidl 36115 The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))
 
Theoremunichnidl 36116* The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
 
Theoremkeridl 36117 The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
𝐺 = (1st𝑆)    &   𝑍 = (GId‘𝐺)       ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))
 
Theorempridlval 36118* The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
 
Theoremispridl 36119* The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
 
Theorempridlidl 36120 A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅))
 
Theorempridlnr 36121 A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)
 
Theorempridl 36122* The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐻 = (2nd𝑅)       (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
 
Theoremispridl2 36123* A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 36155 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
 
Theoremmaxidlval 36124* The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
 
Theoremismaxidl 36125* The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
 
Theoremmaxidlidl 36126 A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
 
Theoremmaxidlnr 36127 A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀𝑋)
 
Theoremmaxidlmax 36128 A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝑋))
 
Theoremmaxidln1 36129 One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐻 = (2nd𝑅)    &   𝑈 = (GId‘𝐻)       ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)
 
Theoremmaxidln0 36130 A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)
 
20.20.21  Prime rings and integral domains
 
Syntaxcprrng 36131 Extend class notation with the class of prime rings.
class PrRing
 
Syntaxcdmn 36132 Extend class notation with the class of domains.
class Dmn
 
Definitiondf-prrngo 36133 Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
 
Definitiondf-dmn 36134 Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Dmn = (PrRing ∩ Com2)
 
Theoremisprrngo 36135 The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑍 = (GId‘𝐺)       (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
 
Theoremprrngorngo 36136 A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
 
Theoremsmprngopr 36137 A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)
 
Theoremdivrngpr 36138 A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
(𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
 
Theoremisdmn 36139 The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
 
Theoremisdmn2 36140 The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
 
Theoremdmncrng 36141 A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
(𝑅 ∈ Dmn → 𝑅 ∈ CRingOps)
 
Theoremdmnrngo 36142 A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
(𝑅 ∈ Dmn → 𝑅 ∈ RingOps)
 
Theoremflddmn 36143 A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝐾 ∈ Fld → 𝐾 ∈ Dmn)
 
20.20.22  Ideal generators
 
Syntaxcigen 36144 Extend class notation with the ideal generation function.
class IdlGen
 
Definitiondf-igen 36145* Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
 
Theoremigenval 36146* The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
 
Theoremigenss 36147 A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
 
Theoremigenidl 36148 The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
 
Theoremigenmin 36149 The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.)
((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
 
Theoremigenidl2 36150 The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
 
Theoremigenval2 36151* The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
 
Theoremprnc 36152* A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
 
Theoremisfldidl 36153 Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝐾)    &   𝐻 = (2nd𝐾)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
 
Theoremisfldidl2 36154 Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝐾)    &   𝐻 = (2nd𝐾)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
 
Theoremispridlc 36155* The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
 
Theorempridlc 36156 Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
 
Theorempridlc2 36157 Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵𝑃)
 
Theorempridlc3 36158 Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))
 
Theoremisdmn3 36159* The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
 
Theoremdmnnzd 36160 A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))
 
Theoremdmncan1 36161 Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶))
 
Theoremdmncan2 36162 Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐶𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵))
 
20.21  Mathbox for Giovanni Mascellani
 
20.21.1  Tools for automatic proof building

The results in this section are mostly meant for being used by automatic proof building programs. As a result, they might appear less useful or meaningful than others to human beings.

 
Theoremefald2 36163 A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
𝜑 → ⊥)       𝜑
 
Theoremnotbinot1 36164 Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(¬ (¬ 𝜑𝜓) ↔ (𝜑𝜓))
 
Theorembicontr 36165 Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
((¬ 𝜑𝜑) ↔ ⊥)
 
Theoremimpor 36166 An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
((𝜑 → (𝜓𝜒)) ↔ ((¬ 𝜑𝜓) ∨ 𝜒))
 
Theoremorfa 36167 The falsum can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
((𝜑 ∨ ⊥) ↔ 𝜑)
 
Theoremnotbinot2 36168 Commutation rule between negation and biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(¬ (𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Theorembiimpor 36169 A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(((𝜑𝜓) → 𝜒) ↔ ((¬ 𝜑𝜓) ∨ 𝜒))
 
Theoremorfa1 36170 Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑𝜓)       ((𝜑 ∨ ⊥) → 𝜓)
 
Theoremorfa2 36171 Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ⊥)       ((𝜑𝜓) → 𝜓)
 
Theorembifald 36172 Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ¬ 𝜓)       (𝜑 → (𝜓 ↔ ⊥))
 
Theoremorsild 36173 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ¬ (𝜓𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremorsird 36174 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ¬ (𝜓𝜒))       (𝜑 → ¬ 𝜒)
 
Theoremcnf1dd 36175 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓 → ¬ 𝜒))    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓𝜃))
 
Theoremcnf2dd 36176 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓 → ¬ 𝜃))    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓𝜒))
 
Theoremcnfn1dd 36177 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓 → (¬ 𝜒𝜃)))       (𝜑 → (𝜓𝜃))
 
Theoremcnfn2dd 36178 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓𝜃))    &   (𝜑 → (𝜓 → (𝜒 ∨ ¬ 𝜃)))       (𝜑 → (𝜓𝜒))
 
Theoremor32dd 36179 A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓 → ((𝜒𝜃) ∨ 𝜏)))       (𝜑 → (𝜓 → ((𝜒𝜏) ∨ 𝜃)))
 
Theoremnotornotel1 36180 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → ¬ (¬ 𝜓𝜒))       (𝜑𝜓)
 
Theoremnotornotel2 36181 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → ¬ (𝜓 ∨ ¬ 𝜒))       (𝜑𝜒)
 
Theoremcontrd 36182 A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (¬ 𝜓𝜒))    &   (𝜑 → (¬ 𝜓 → ¬ 𝜒))       (𝜑𝜓)
 
Theoreman12i 36183 An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.)
(𝜑 ∧ (𝜓𝜒))       (𝜓 ∧ (𝜑𝜒))
 
Theoremexmid2 36184 An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019.)
((𝜓𝜑) → 𝜒)    &   ((¬ 𝜓𝜂) → 𝜒)       ((𝜑𝜂) → 𝜒)
 
Theoremselconj 36185 An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
(𝜑 ↔ (𝜓𝜒))       ((𝜂𝜑) ↔ (𝜓 ∧ (𝜂𝜒)))
 
Theoremtruconj 36186 Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019.)
(𝜑 ↔ (⊤ ∧ 𝜑))
 
Theoremorel 36187 An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.)
((𝜓𝜂) → 𝜃)    &   ((𝜒𝜌) → 𝜃)    &   (𝜑 → (𝜓𝜒))       ((𝜑 ∧ (𝜂𝜌)) → 𝜃)
 
Theoremnegel 36188 An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.)
(𝜓𝜒)    &   (𝜑 → ¬ 𝜒)       ((𝜑𝜓) → ⊥)
 
Theorembotel 36189 An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019.)
(𝜑 → ⊥)       (𝜑𝜓)
 
Theoremtradd 36190 Add top ad a conjunct. (Contributed by Giovanni Mascellani, 24-May-2019.)
(𝜑𝜓)       (𝜑 ↔ (⊤ ∧ 𝜓))
 
Theoremgm-sbtru 36191 Substitution does not change truth. (Contributed by Giovanni Mascellani, 24-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]⊤ ↔ ⊤)
 
Theoremsbfal 36192 Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]⊥ ↔ ⊥)
 
Theoremsbcani 36193 Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
([𝐴 / 𝑥]𝜑𝜒)    &   ([𝐴 / 𝑥]𝜓𝜂)       ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
 
Theoremsbcori 36194 Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
([𝐴 / 𝑥]𝜑𝜒)    &   ([𝐴 / 𝑥]𝜓𝜂)       ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
 
Theoremsbcimi 36195 Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V    &   ([𝐴 / 𝑥]𝜑𝜒)    &   ([𝐴 / 𝑥]𝜓𝜂)       ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
 
Theoremsbcni 36196 Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V    &   ([𝐴 / 𝑥]𝜑𝜓)       ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓)
 
Theoremsbali 36197 Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremsbexi 36198 Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theoremsbcalf 36199* Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.)
𝑦𝐴       ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
 
Theoremsbcexf 36200* Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.)
𝑦𝐴       ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >