| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-rnf | Structured version Visualization version GIF version | ||
| Description: Definition of restricted nonfreeness. Informally, the proposition Ⅎ𝑥 ∈ 𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.) |
| Ref | Expression |
|---|---|
| df-bj-rnf | ⊢ (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wrnf 36883 | . 2 wff Ⅎ𝑥 ∈ 𝐴𝜑 |
| 5 | 1, 2, 3 | wrex 3059 | . . 3 wff ∃𝑥 ∈ 𝐴 𝜑 |
| 6 | 1, 2, 3 | wral 3050 | . . 3 wff ∀𝑥 ∈ 𝐴 𝜑 |
| 7 | 5, 6 | wi 4 | . 2 wff (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| 8 | 4, 7 | wb 206 | 1 wff (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |