Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-rnf | Structured version Visualization version GIF version |
Description: Definition of restricted nonfreeness. Informally, the proposition Ⅎ𝑥 ∈ 𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.) |
Ref | Expression |
---|---|
df-bj-rnf | ⊢ (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrnf 35056 | . 2 wff Ⅎ𝑥 ∈ 𝐴𝜑 |
5 | 1, 2, 3 | wrex 3064 | . . 3 wff ∃𝑥 ∈ 𝐴 𝜑 |
6 | 1, 2, 3 | wral 3063 | . . 3 wff ∀𝑥 ∈ 𝐴 𝜑 |
7 | 5, 6 | wi 4 | . 2 wff (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
8 | 4, 7 | wb 205 | 1 wff (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |