Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru0 | Structured version Visualization version GIF version |
Description: The FOL part of Russell's paradox ru 3708 (see also bj-ru1 34898, bj-ru 34899). Use of elequ1 2118, bj-elequ12 34626 (instead of eleq1 2826, eleq12d 2833 as in ru 3708) permits to remove dependency on ax-10 2142, ax-11 2159, ax-12 2176, ax-ext 2709, df-sb 2072, df-clab 2716, df-cleq 2730, df-clel 2817. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru0 | ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 391 | . 2 ⊢ ¬ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦) | |
2 | elequ1 2118 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
3 | bj-elequ12 34626 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
4 | 3 | anidms 570 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
5 | 4 | notbid 321 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
6 | 2, 5 | bibi12d 349 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦))) |
7 | 6 | spvv 2005 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) → (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦)) |
8 | 1, 7 | mto 200 | 1 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∀wal 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: bj-ru1 34898 |
Copyright terms: Public domain | W3C validator |