Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru0 Structured version   Visualization version   GIF version

Theorem bj-ru0 36127
Description: The FOL part of Russell's paradox ru 3776 (see also bj-ru1 36128, bj-ru 36129). Use of elequ1 2112, bj-elequ12 35860 (instead of eleq1 2820, eleq12d 2826 as in ru 3776) permits to remove dependency on ax-10 2136, ax-11 2153, ax-12 2170, ax-ext 2702, df-sb 2067, df-clab 2709, df-cleq 2723, df-clel 2809. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru0 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-ru0
StepHypRef Expression
1 pm5.19 386 . 2 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 elequ1 2112 . . . 4 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 bj-elequ12 35860 . . . . . 6 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
43anidms 566 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
54notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
62, 5bibi12d 345 . . 3 (𝑥 = 𝑦 → ((𝑥𝑦 ↔ ¬ 𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
76spvv 1999 . 2 (∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
81, 7mto 196 1 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781
This theorem is referenced by:  bj-ru1  36128
  Copyright terms: Public domain W3C validator