Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru0 Structured version   Visualization version   GIF version

Theorem bj-ru0 35058
Description: The FOL part of Russell's paradox ru 3710 (see also bj-ru1 35059, bj-ru 35060). Use of elequ1 2115, bj-elequ12 34787 (instead of eleq1 2826, eleq12d 2833 as in ru 3710) permits to remove dependency on ax-10 2139, ax-11 2156, ax-12 2173, ax-ext 2709, df-sb 2069, df-clab 2716, df-cleq 2730, df-clel 2817. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru0 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-ru0
StepHypRef Expression
1 pm5.19 387 . 2 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 elequ1 2115 . . . 4 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 bj-elequ12 34787 . . . . . 6 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
43anidms 566 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
54notbid 317 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
62, 5bibi12d 345 . . 3 (𝑥 = 𝑦 → ((𝑥𝑦 ↔ ¬ 𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
76spvv 2001 . 2 (∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
81, 7mto 196 1 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  bj-ru1  35059
  Copyright terms: Public domain W3C validator