![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru0 | Structured version Visualization version GIF version |
Description: The FOL part of Russell's paradox ru 3776 (see also bj-ru1 36128, bj-ru 36129). Use of elequ1 2112, bj-elequ12 35860 (instead of eleq1 2820, eleq12d 2826 as in ru 3776) permits to remove dependency on ax-10 2136, ax-11 2153, ax-12 2170, ax-ext 2702, df-sb 2067, df-clab 2709, df-cleq 2723, df-clel 2809. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru0 | ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 386 | . 2 ⊢ ¬ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦) | |
2 | elequ1 2112 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
3 | bj-elequ12 35860 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
4 | 3 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
5 | 4 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
6 | 2, 5 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦))) |
7 | 6 | spvv 1999 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) → (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦)) |
8 | 1, 7 | mto 196 | 1 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 |
This theorem is referenced by: bj-ru1 36128 |
Copyright terms: Public domain | W3C validator |