| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-sngl | Structured version Visualization version GIF version | ||
| Description: Definition of "singletonization". The class sngl 𝐴 is isomorphic to 𝐴 and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-bj-sngl | ⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | bj-csngl 36966 | . 2 class sngl 𝐴 |
| 3 | vx | . . . . . 6 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . . 5 class 𝑥 |
| 5 | vy | . . . . . . 7 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑦 |
| 7 | 6 | csn 4626 | . . . . 5 class {𝑦} |
| 8 | 4, 7 | wceq 1540 | . . . 4 wff 𝑥 = {𝑦} |
| 9 | 8, 5, 1 | wrex 3070 | . . 3 wff ∃𝑦 ∈ 𝐴 𝑥 = {𝑦} |
| 10 | 9, 3 | cab 2714 | . 2 class {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} |
| 11 | 2, 10 | wceq 1540 | 1 wff sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-sngleq 36968 bj-elsngl 36969 |
| Copyright terms: Public domain | W3C validator |