| Step | Hyp | Ref
| Expression |
| 1 | | dfclel 2805 |
. 2
⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵)) |
| 2 | | df-bj-sngl 36951 |
. . . . 5
⊢ sngl
𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}} |
| 3 | 2 | eqabri 2873 |
. . . 4
⊢ (𝑦 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) |
| 4 | 3 | anbi2i 623 |
. . 3
⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥})) |
| 5 | 4 | exbii 1848 |
. 2
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵) ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥})) |
| 6 | | r19.42v 3171 |
. . . . 5
⊢
(∃𝑥 ∈
𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ (𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥})) |
| 7 | 6 | bicomi 224 |
. . . 4
⊢ ((𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
| 8 | 7 | exbii 1848 |
. . 3
⊢
(∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) ↔ ∃𝑦∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
| 9 | | rexcom4 3266 |
. . . 4
⊢
(∃𝑥 ∈
𝐵 ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ ∃𝑦∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
| 10 | 9 | bicomi 224 |
. . 3
⊢
(∃𝑦∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
| 11 | | eqcom 2737 |
. . . . . 6
⊢ (𝐴 = {𝑥} ↔ {𝑥} = 𝐴) |
| 12 | | vsnex 5397 |
. . . . . . 7
⊢ {𝑥} ∈ V |
| 13 | 12 | eqvinc 3624 |
. . . . . 6
⊢ ({𝑥} = 𝐴 ↔ ∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴)) |
| 14 | | exancom 1861 |
. . . . . 6
⊢
(∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
| 15 | 11, 13, 14 | 3bitri 297 |
. . . . 5
⊢ (𝐴 = {𝑥} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
| 16 | 15 | bicomi 224 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ 𝐴 = {𝑥}) |
| 17 | 16 | rexbii 3078 |
. . 3
⊢
(∃𝑥 ∈
𝐵 ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) |
| 18 | 8, 10, 17 | 3bitri 297 |
. 2
⊢
(∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) |
| 19 | 1, 5, 18 | 3bitri 297 |
1
⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) |