Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsngl Structured version   Visualization version   GIF version

Theorem bj-elsngl 33286
Description: Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-elsngl (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-elsngl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clel 2767 . 2 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ sngl 𝐵))
2 df-bj-sngl 33284 . . . . 5 sngl 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦 = {𝑥}}
32abeq2i 2884 . . . 4 (𝑦 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝑦 = {𝑥})
43anbi2i 609 . . 3 ((𝑦 = 𝐴𝑦 ∈ sngl 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}))
54exbii 1924 . 2 (∃𝑦(𝑦 = 𝐴𝑦 ∈ sngl 𝐵) ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}))
6 r19.42v 3240 . . . . 5 (∃𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}) ↔ (𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}))
76bicomi 214 . . . 4 ((𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}) ↔ ∃𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}))
87exbii 1924 . . 3 (∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}) ↔ ∃𝑦𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}))
9 rexcom4 3377 . . . 4 (∃𝑥𝐵𝑦(𝑦 = 𝐴𝑦 = {𝑥}) ↔ ∃𝑦𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}))
109bicomi 214 . . 3 (∃𝑦𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}) ↔ ∃𝑥𝐵𝑦(𝑦 = 𝐴𝑦 = {𝑥}))
11 eqcom 2778 . . . . . 6 (𝐴 = {𝑥} ↔ {𝑥} = 𝐴)
12 snex 5037 . . . . . . 7 {𝑥} ∈ V
1312eqvinc 3480 . . . . . 6 ({𝑥} = 𝐴 ↔ ∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴))
14 exancom 1938 . . . . . 6 (∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴) ↔ ∃𝑦(𝑦 = 𝐴𝑦 = {𝑥}))
1511, 13, 143bitri 286 . . . . 5 (𝐴 = {𝑥} ↔ ∃𝑦(𝑦 = 𝐴𝑦 = {𝑥}))
1615bicomi 214 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦 = {𝑥}) ↔ 𝐴 = {𝑥})
1716rexbii 3189 . . 3 (∃𝑥𝐵𝑦(𝑦 = 𝐴𝑦 = {𝑥}) ↔ ∃𝑥𝐵 𝐴 = {𝑥})
188, 10, 173bitri 286 . 2 (∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}) ↔ ∃𝑥𝐵 𝐴 = {𝑥})
191, 5, 183bitri 286 1 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wex 1852  wcel 2145  wrex 3062  {csn 4317  sngl bj-csngl 33283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-v 3353  df-dif 3726  df-un 3728  df-nul 4064  df-sn 4318  df-pr 4320  df-bj-sngl 33284
This theorem is referenced by:  bj-snglc  33287  bj-snglss  33288  bj-0nelsngl  33289  bj-eltag  33295
  Copyright terms: Public domain W3C validator