Step | Hyp | Ref
| Expression |
1 | | dfclel 2818 |
. 2
⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵)) |
2 | | df-bj-sngl 35135 |
. . . . 5
⊢ sngl
𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}} |
3 | 2 | abeq2i 2876 |
. . . 4
⊢ (𝑦 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) |
4 | 3 | anbi2i 622 |
. . 3
⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥})) |
5 | 4 | exbii 1853 |
. 2
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵) ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥})) |
6 | | r19.42v 3278 |
. . . . 5
⊢
(∃𝑥 ∈
𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ (𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥})) |
7 | 6 | bicomi 223 |
. . . 4
⊢ ((𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
8 | 7 | exbii 1853 |
. . 3
⊢
(∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) ↔ ∃𝑦∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
9 | | rexcom4 3181 |
. . . 4
⊢
(∃𝑥 ∈
𝐵 ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ ∃𝑦∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
10 | 9 | bicomi 223 |
. . 3
⊢
(∃𝑦∃𝑥 ∈ 𝐵 (𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
11 | | eqcom 2746 |
. . . . . 6
⊢ (𝐴 = {𝑥} ↔ {𝑥} = 𝐴) |
12 | | snex 5357 |
. . . . . . 7
⊢ {𝑥} ∈ V |
13 | 12 | eqvinc 3579 |
. . . . . 6
⊢ ({𝑥} = 𝐴 ↔ ∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴)) |
14 | | exancom 1867 |
. . . . . 6
⊢
(∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
15 | 11, 13, 14 | 3bitri 296 |
. . . . 5
⊢ (𝐴 = {𝑥} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥})) |
16 | 15 | bicomi 223 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ 𝐴 = {𝑥}) |
17 | 16 | rexbii 3179 |
. . 3
⊢
(∃𝑥 ∈
𝐵 ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) |
18 | 8, 10, 17 | 3bitri 296 |
. 2
⊢
(∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥 ∈ 𝐵 𝑦 = {𝑥}) ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) |
19 | 1, 5, 18 | 3bitri 296 |
1
⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) |