Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsngl Structured version   Visualization version   GIF version

Theorem bj-elsngl 34404
Description: Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-elsngl (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-elsngl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2871 . 2 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ sngl 𝐵))
2 df-bj-sngl 34402 . . . . 5 sngl 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦 = {𝑥}}
32abeq2i 2925 . . . 4 (𝑦 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝑦 = {𝑥})
43anbi2i 625 . . 3 ((𝑦 = 𝐴𝑦 ∈ sngl 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}))
54exbii 1849 . 2 (∃𝑦(𝑦 = 𝐴𝑦 ∈ sngl 𝐵) ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}))
6 r19.42v 3303 . . . . 5 (∃𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}) ↔ (𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}))
76bicomi 227 . . . 4 ((𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}) ↔ ∃𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}))
87exbii 1849 . . 3 (∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}) ↔ ∃𝑦𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}))
9 rexcom4 3212 . . . 4 (∃𝑥𝐵𝑦(𝑦 = 𝐴𝑦 = {𝑥}) ↔ ∃𝑦𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}))
109bicomi 227 . . 3 (∃𝑦𝑥𝐵 (𝑦 = 𝐴𝑦 = {𝑥}) ↔ ∃𝑥𝐵𝑦(𝑦 = 𝐴𝑦 = {𝑥}))
11 eqcom 2805 . . . . . 6 (𝐴 = {𝑥} ↔ {𝑥} = 𝐴)
12 snex 5297 . . . . . . 7 {𝑥} ∈ V
1312eqvinc 3590 . . . . . 6 ({𝑥} = 𝐴 ↔ ∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴))
14 exancom 1862 . . . . . 6 (∃𝑦(𝑦 = {𝑥} ∧ 𝑦 = 𝐴) ↔ ∃𝑦(𝑦 = 𝐴𝑦 = {𝑥}))
1511, 13, 143bitri 300 . . . . 5 (𝐴 = {𝑥} ↔ ∃𝑦(𝑦 = 𝐴𝑦 = {𝑥}))
1615bicomi 227 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦 = {𝑥}) ↔ 𝐴 = {𝑥})
1716rexbii 3210 . . 3 (∃𝑥𝐵𝑦(𝑦 = 𝐴𝑦 = {𝑥}) ↔ ∃𝑥𝐵 𝐴 = {𝑥})
188, 10, 173bitri 300 . 2 (∃𝑦(𝑦 = 𝐴 ∧ ∃𝑥𝐵 𝑦 = {𝑥}) ↔ ∃𝑥𝐵 𝐴 = {𝑥})
191, 5, 183bitri 300 1 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wrex 3107  {csn 4525  sngl bj-csngl 34401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-nul 4244  df-sn 4526  df-pr 4528  df-bj-sngl 34402
This theorem is referenced by:  bj-snglc  34405  bj-snglss  34406  bj-0nelsngl  34407  bj-eltag  34413
  Copyright terms: Public domain W3C validator