| Metamath
Proof Explorer Theorem List (p. 366 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dnibndlem11 36501 | Lemma for dnibnd 36504. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2)) | ||
| Theorem | dnibndlem12 36502* | Lemma for dnibnd 36504. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
| Theorem | dnibndlem13 36503* | Lemma for dnibnd 36504. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
| Theorem | dnibnd 36504* | The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
| Theorem | dnicn 36505 | The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ 𝑇 ∈ (ℝ–cn→ℝ) | ||
| Theorem | knoppcnlem1 36506* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) | ||
| Theorem | knoppcnlem2 36507* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ) | ||
| Theorem | knoppcnlem3 36508* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) ∈ ℝ) | ||
| Theorem | knoppcnlem4 36509* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀)) | ||
| Theorem | knoppcnlem5 36510* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) | ||
| Theorem | knoppcnlem6 36511* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ)) | ||
| Theorem | knoppcnlem7 36512* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) | ||
| Theorem | knoppcnlem8 36513* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) | ||
| Theorem | knoppcnlem9 36514* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) | ||
| Theorem | knoppcnlem10 36515* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) Avoid ax-mulf 11078. (Revised by GG, 19-Apr-2025.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) | ||
| Theorem | knoppcnlem11 36516* | Lemma for knoppcn 36517. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ)) | ||
| Theorem | knoppcn 36517* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) | ||
| Theorem | knoppcld 36518* | Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) ∈ ℂ) | ||
| Theorem | unblimceq0lem 36519* | Lemma for unblimceq0 36520. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∀𝑐 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑦 ∈ 𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) | ||
| Theorem | unblimceq0 36520* | If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) | ||
| Theorem | unbdqndv1 36521* | If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) | ||
| Theorem | unbdqndv2lem1 36522 | Lemma for unbdqndv2 36524. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ≠ 0) & ⊢ (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴 − 𝐵) / 𝐷))) ⇒ ⊢ (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴 − 𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵 − 𝐶)))) | ||
| Theorem | unbdqndv2lem2 36523* | Lemma for unbdqndv2 36524. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ 𝑊 = if((𝐵 · (𝑉 − 𝑈)) ≤ (abs‘((𝐹‘𝑈) − (𝐹‘𝐴))), 𝑈, 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝑉) & ⊢ (𝜑 → (𝑉 − 𝑈) < 𝐷) & ⊢ (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹‘𝑉) − (𝐹‘𝑈))) / (𝑉 − 𝑈))) ⇒ ⊢ (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊 − 𝐴)) < 𝐷 ∧ 𝐵 ≤ (abs‘(𝐺‘𝑊))))) | ||
| Theorem | unbdqndv2 36524* | Variant of unbdqndv1 36521 with the hypothesis that (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) is unbounded where 𝑥 ≤ 𝐴 and 𝐴 ≤ 𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) | ||
| Theorem | knoppndvlem1 36525 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) | ||
| Theorem | knoppndvlem2 36526 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 < 𝐼) ⇒ ⊢ (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ) | ||
| Theorem | knoppndvlem3 36527 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
| ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) | ||
| Theorem | knoppndvlem4 36528* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) | ||
| Theorem | knoppndvlem5 36529* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) ∈ ℝ) | ||
| Theorem | knoppndvlem6 36530* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) | ||
| Theorem | knoppndvlem7 36531* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) | ||
| Theorem | knoppndvlem8 36532* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) | ||
| Theorem | knoppndvlem9 36533* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) | ||
| Theorem | knoppndvlem10 36534* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2)) | ||
| Theorem | knoppndvlem11 36535* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((abs‘(𝐵 − 𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖))) | ||
| Theorem | knoppndvlem12 36536 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) | ||
| Theorem | knoppndvlem13 36537 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → 𝐶 ≠ 0) | ||
| Theorem | knoppndvlem14 36538* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) | ||
| Theorem | knoppndvlem15 36539* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 6-Jul-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊‘𝐵) − (𝑊‘𝐴)))) | ||
| Theorem | knoppndvlem16 36540 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 19-Jul-2021.) |
| ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) | ||
| Theorem | knoppndvlem17 36541* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 12-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘𝐵) − (𝑊‘𝐴))) / (𝐵 − 𝐴))) | ||
| Theorem | knoppndvlem18 36542* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))) | ||
| Theorem | knoppndvlem19 36543* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 17-Aug-2021.) |
| ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℤ (𝐴 ≤ 𝐻 ∧ 𝐻 ≤ 𝐵)) | ||
| Theorem | knoppndvlem20 36544 | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
| ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) | ||
| Theorem | knoppndvlem21 36545* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) & ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷) & ⊢ (𝜑 → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
| Theorem | knoppndvlem22 36546* | Lemma for knoppndv 36547. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
| Theorem | knoppndv 36547* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) | ||
| Theorem | knoppf 36548* | Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) | ||
| Theorem | knoppcn2 36549* | Variant of knoppcn 36517 with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℝ)) | ||
| Theorem | cnndvlem1 36550* | Lemma for cnndv 36552. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) | ||
| Theorem | cnndvlem2 36551* | Lemma for cnndv 36552. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
| ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
| Theorem | cnndv 36552 | There exists a continuous nowhere differentiable function. The result follows directly from knoppcn 36517 and knoppndv 36547. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
| ⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
In this mathbox, we try to respect the ordering of the sections of the main part. There are strengthenings of theorems of the main part, as well as work on reducing axiom dependencies. | ||
Miscellaneous utility theorems of propositional calculus. | ||
In this section, we prove a few rules of inference derived from modus ponens ax-mp 5, and which do not depend on any other axioms. | ||
| Theorem | bj-mp2c 36553 | A double modus ponens inference. Inference associated with mpd 15. (Contributed by BJ, 24-Sep-2019.) |
| ⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
| Theorem | bj-mp2d 36554 | A double modus ponens inference. Inference associated with mpcom 38. (Contributed by BJ, 24-Sep-2019.) |
| ⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) ⇒ ⊢ 𝜒 | ||
In this section, we prove a syntactic theorem (bj-0 36555) asserting that some formula is well-formed. Then, we use this syntactic theorem to shorten the proof of a "usual" theorem (bj-1 36556) and explain in the comment of that theorem why this phenomenon is unusual. | ||
| Theorem | bj-0 36555 | A syntactic theorem. See the section comment and the comment of bj-1 36556. The full proof (that is, with the syntactic, non-essential steps) does not appear on this webpage. It has five steps and reads $= wph wps wi wch wi $. The only other syntactic theorems in the main part of set.mm are wel 2111 and weq 1963. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| wff ((𝜑 → 𝜓) → 𝜒) | ||
| Theorem | bj-1 36556 |
In this proof, the use of the syntactic theorem bj-0 36555
allows to reduce
the total length by one (non-essential) step. See also the section
comment and the comment of bj-0 36555. Since bj-0 36555
is used in a
non-essential step, this use does not appear on this webpage (but the
present theorem appears on the webpage for bj-0 36555
as a theorem referencing
it). The full proof reads $= wph wps wch bj-0 id $. (while, without
using bj-0 36555, it would read $= wph wps wi wch wi id $.).
Now we explain why syntactic theorems are not useful in set.mm. Suppose that the syntactic theorem thm-0 proves that PHI is a well-formed formula, and that thm-0 is used to shorten the proof of thm-1. Assume that PHI does have proper non-atomic subformulas (which is not the case of the formula proved by weq 1963 or wel 2111). Then, the proof of thm-1 does not construct all the proper non-atomic subformulas of PHI (if it did, then using thm-0 would not shorten it). Therefore, thm-1 is a special instance of a more general theorem with essentially the same proof. In the present case, bj-1 36556 is a special instance of id 22. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜒)) | ||
| Theorem | bj-a1k 36557 | Weakening of ax-1 6. As a consequence, its associated inference is an instance (where we allow extra hypotheses) of ax-1 6. Its commuted form is 2a1 28 (but bj-a1k 36557 does not require ax-2 7). This shortens the proofs of dfwe2 7702 (937>925), ordunisuc2 7769 (789>777), r111 9660 (558>545), smo11 8279 (1176>1164). (Contributed by BJ, 11-Aug-2020.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
| Theorem | bj-poni 36558 | Inference associated with "pon", pm2.27 42. Its associated inference is ax-mp 5. (Contributed by BJ, 30-Jul-2024.) |
| ⊢ 𝜑 ⇒ ⊢ ((𝜑 → 𝜓) → 𝜓) | ||
| Theorem | bj-nnclav 36559 | When ⊥ is substituted for 𝜓, this formula is the Clavius law with a doubly negated consequent, which is therefore a minimalistic tautology. Notice the non-intuitionistic proof from peirce 202 and pm2.27 42 chained using syl 17. (Contributed by BJ, 4-Dec-2023.) |
| ⊢ (((𝜑 → 𝜓) → 𝜑) → ((𝜑 → 𝜓) → 𝜓)) | ||
| Theorem | bj-nnclavi 36560 | Inference associated with bj-nnclav 36559. Its associated inference is an instance of syl 17. Notice the non-intuitionistic proof from bj-peircei 36578 and bj-poni 36558. (Contributed by BJ, 30-Jul-2024.) |
| ⊢ ((𝜑 → 𝜓) → 𝜑) ⇒ ⊢ ((𝜑 → 𝜓) → 𝜓) | ||
| Theorem | bj-nnclavc 36561 | Commuted form of bj-nnclav 36559. Notice the non-intuitionistic proof from bj-peircei 36578 and imim1i 63. (Contributed by BJ, 30-Jul-2024.) A proof which is shorter when compressed uses embantd 59. (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜓) → 𝜑) → 𝜓)) | ||
| Theorem | bj-nnclavci 36562 | Inference associated with bj-nnclavc 36561. Its associated inference is an instance of syl 17. Notice the non-intuitionistic proof from peirce 202 and syl 17. (Contributed by BJ, 30-Jul-2024.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜓) | ||
| Theorem | bj-jarrii 36563 | Inference associated with jarri 107. Contrary to it, it does not require ax-2 7, but only ax-mp 5 and ax-1 6. (Contributed by BJ, 29-Mar-2020.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → 𝜒) & ⊢ 𝜓 ⇒ ⊢ 𝜒 | ||
| Theorem | bj-imim21 36564 | The propositional function (𝜒 → (. → 𝜃)) is decreasing. (Contributed by BJ, 19-Jul-2019.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜓 → 𝜃)) → (𝜒 → (𝜑 → 𝜃)))) | ||
| Theorem | bj-imim21i 36565 | Inference associated with bj-imim21 36564. Its associated inference is syl5 34. (Contributed by BJ, 19-Jul-2019.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 → (𝜓 → 𝜃)) → (𝜒 → (𝜑 → 𝜃))) | ||
| Theorem | bj-peircestab 36566 | Over minimal implicational calculus, Peirce's law implies the double negation of the stability of any formula (that is the interpretation when ⊥ is substituted for 𝜓 and for 𝜒). Therefore, the double negation of the stability of any formula is provable in classical refutability calculus. It is also provable in intuitionistic calculus (see iset.mm/bj-nnst) but it is not provable in minimal calculus (see bj-stabpeirce 36567). (Contributed by BJ, 30-Nov-2023.) Axiom ax-3 8 is only used through Peirce's law peirce 202. (Proof modification is discouraged.) |
| ⊢ (((((𝜑 → 𝜓) → 𝜒) → 𝜑) → 𝜒) → 𝜒) | ||
| Theorem | bj-stabpeirce 36567 | This minimal implicational calculus tautology is used in the following argument: When 𝜑, 𝜓, 𝜒, 𝜃, 𝜏 are replaced respectively by (𝜑 → ⊥), ⊥, 𝜑, ⊥, ⊥, the antecedent becomes ¬ ¬ (¬ ¬ 𝜑 → 𝜑), that is, the double negation of the stability of 𝜑. If that statement were provable in minimal calculus, then, since ⊥ plays no particular role in minimal calculus, also the statement with 𝜓 in place of ⊥ would be provable. The corresponding consequent is (((𝜓 → 𝜑) → 𝜓) → 𝜓), that is, the non-intuitionistic Peirce law. Therefore, the double negation of the stability of any formula is not provable in minimal calculus. However, it is provable both in intuitionistic calculus (see iset.mm/bj-nnst) and in classical refutability calculus (see bj-peircestab 36566). (Contributed by BJ, 30-Nov-2023.) (Revised by BJ, 30-Jul-2024.) (Proof modification is discouraged.) |
| ⊢ (((((𝜑 → 𝜓) → 𝜒) → 𝜃) → 𝜏) → (((𝜓 → 𝜒) → 𝜃) → 𝜏)) | ||
Positive calculus is understood to be intuitionistic. | ||
| Theorem | bj-syl66ib 36568 | A mixed syllogism inference derived from imbitrdi 251. In addition to bj-dvelimdv1 36865, it can also shorten alexsubALTlem4 23958 (4821>4812), supsrlem 10994 (2868>2863). (Contributed by BJ, 20-Oct-2021.) |
| ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜃 → 𝜏) & ⊢ (𝜏 ↔ 𝜒) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
| Theorem | bj-orim2 36569 | Proof of orim2 969 from the axiomatic definition of disjunction (olc 868, orc 867, jao 962) and minimal implicational calculus. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓))) | ||
| Theorem | bj-currypeirce 36570 | Curry's axiom curryax 893 (a non-intuitionistic positive statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 202 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the elimination axiom jao 962 via its inference form jaoi 857; the introduction axioms olc 868 and orc 867 are not needed). Note that this theorem shows that actually, the standard instance of curryax 893 implies the standard instance of peirce 202, which is not the case for the converse bj-peircecurry 36571. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∨ (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) | ||
| Theorem | bj-peircecurry 36571 | Peirce's axiom peirce 202 implies Curry's axiom curryax 893 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the introduction axioms olc 868 and orc 867; the elimination axiom jao 962 is not needed). See bj-currypeirce 36570 for the converse. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 ∨ (𝜑 → 𝜓)) | ||
| Theorem | bj-animbi 36572 | Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 8 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023.) |
| ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ↔ (𝜑 → 𝜓))) | ||
| Theorem | bj-currypara 36573 | Curry's paradox. Note that the proof is intuitionistic (use of ax-3 8 comes from the unusual definition of the biconditional in set.mm). The paradox comes from the case where 𝜑 is the self-referential sentence "If this sentence is true, then 𝜓", so that one can prove everything. Therefore, a consistent system cannot allow the formation of such self-referential sentences. This has lead to the study of logics rejecting contraction pm2.43 56, such as affine logic and linear logic. (Contributed by BJ, 23-Sep-2023.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → 𝜓) | ||
| Theorem | bj-con2com 36574 | A commuted form of the contrapositive, true in minimal calculus. (Contributed by BJ, 19-Mar-2020.) |
| ⊢ (𝜑 → ((𝜓 → ¬ 𝜑) → ¬ 𝜓)) | ||
| Theorem | bj-con2comi 36575 | Inference associated with bj-con2com 36574. Its associated inference is mt2 200. TODO: when in the main part, add to mt2 200 that it is the inference associated with bj-con2comi 36575. (Contributed by BJ, 19-Mar-2020.) |
| ⊢ 𝜑 ⇒ ⊢ ((𝜓 → ¬ 𝜑) → ¬ 𝜓) | ||
| Theorem | bj-nimn 36576 | If a formula is true, then it does not imply its negation. (Contributed by BJ, 19-Mar-2020.) A shorter proof is possible using id 22 and jc 161, however, the present proof uses theorems that are more basic than jc 161. (Proof modification is discouraged.) |
| ⊢ (𝜑 → ¬ (𝜑 → ¬ 𝜑)) | ||
| Theorem | bj-nimni 36577 | Inference associated with bj-nimn 36576. (Contributed by BJ, 19-Mar-2020.) |
| ⊢ 𝜑 ⇒ ⊢ ¬ (𝜑 → ¬ 𝜑) | ||
| Theorem | bj-peircei 36578 | Inference associated with peirce 202. (Contributed by BJ, 30-Mar-2020.) |
| ⊢ ((𝜑 → 𝜓) → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | bj-looinvi 36579 | Inference associated with looinv 203. Its associated inference is bj-looinvii 36580. (Contributed by BJ, 30-Mar-2020.) |
| ⊢ ((𝜑 → 𝜓) → 𝜓) ⇒ ⊢ ((𝜓 → 𝜑) → 𝜑) | ||
| Theorem | bj-looinvii 36580 | Inference associated with bj-looinvi 36579. (Contributed by BJ, 30-Mar-2020.) |
| ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | bj-mt2bi 36581 | Version of mt2 200 where the major premise is a biconditional. Another proof is also possible via con2bii 357 and mpbi 230. The current mt2bi 363 should be relabeled, maybe to imfal. (Contributed by BJ, 5-Oct-2024.) |
| ⊢ 𝜑 & ⊢ (𝜓 ↔ ¬ 𝜑) ⇒ ⊢ ¬ 𝜓 | ||
| Theorem | bj-ntrufal 36582 | The negation of a theorem is equivalent to false. This can shorten dfnul2 4284. (Contributed by BJ, 5-Oct-2024.) |
| ⊢ 𝜑 ⇒ ⊢ (¬ 𝜑 ↔ ⊥) | ||
| Theorem | bj-fal 36583 | Shortening of fal 1555 using bj-mt2bi 36581. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) (Proof modification is discouraged.) |
| ⊢ ¬ ⊥ | ||
A few lemmas about disjunction. The fundamental theorems in this family are the dual statements pm4.71 557 and pm4.72 951. See also biort 935 and biorf 936. | ||
| Theorem | bj-jaoi1 36584 | Shortens orfa2 38105 (58>53), pm1.2 903 (20>18), pm1.2 903 (20>18), pm2.4 906 (31>25), pm2.41 907 (31>25), pm2.42 944 (38>32), pm3.2ni 880 (43>39), pm4.44 998 (55>51). (Contributed by BJ, 30-Sep-2019.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
| Theorem | bj-jaoi2 36585 | Shortens consensus 1052 (110>106), elnn0z 12473 (336>329), pm1.2 903 (20>19), pm3.2ni 880 (43>39), pm4.44 998 (55>51). (Contributed by BJ, 30-Sep-2019.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 ∨ 𝜑) → 𝜓) | ||
A few other characterizations of the biconditional. The inter-definability of logical connectives offers many ways to express a given statement. Some useful theorems in this regard are df-or 848, df-an 396, pm4.64 849, imor 853, pm4.62 856 through pm4.67 398, and, for the De Morgan laws, ianor 983 through pm4.57 992. | ||
| Theorem | bj-dfbi4 36586 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
| Theorem | bj-dfbi5 36587 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | ||
| Theorem | bj-dfbi6 36588 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) | ||
| Theorem | bj-bijust0ALT 36589 | Alternate proof of bijust0 204; shorter but using additional intermediate results. (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Revised by BJ, 19-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜑 → 𝜑)) | ||
| Theorem | bj-bijust00 36590 | A self-implication does not imply the negation of a self-implication. Most general theorem of which bijust 205 is an instance (bijust0 204 and bj-bijust0ALT 36589 are therefore also instances of it). (Contributed by BJ, 7-Sep-2022.) |
| ⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜓 → 𝜓)) | ||
| Theorem | bj-consensus 36591 | Version of consensus 1052 expressed using the conditional operator. (Remark: it may be better to express it as consensus 1052, using only binary connectives, and hinting at the fact that it is a Boolean algebra identity, like the absorption identities.) (Contributed by BJ, 30-Sep-2019.) |
| ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
| Theorem | bj-consensusALT 36592 | Alternate proof of bj-consensus 36591. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
| Theorem | bj-df-ifc 36593* | Candidate definition for the conditional operator for classes. This is in line with the definition of a class as the extension of a predicate in df-clab 2709. We reprove the current df-if 4474 from it in bj-dfif 36594. (Contributed by BJ, 20-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | ||
| Theorem | bj-dfif 36594* | Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} | ||
| Theorem | bj-ififc 36595 | A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on 𝑋: it is implied by either side. (Contributed by BJ, 24-Sep-2019.) Generalize statement from setvar 𝑥 to class 𝑋. (Revised by BJ, 26-Dec-2023.) |
| ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) | ||
Miscellaneous theorems of propositional calculus. | ||
| Theorem | bj-imbi12 36596 | Uncurried (imported) form of imbi12 346. (Contributed by BJ, 6-May-2019.) |
| ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
| Theorem | bj-falor 36597 | Dual of truan 1552 (which has biconditional reversed). (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 ↔ (⊥ ∨ 𝜑)) | ||
| Theorem | bj-falor2 36598 | Dual of truan 1552. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) | ||
| Theorem | bj-bibibi 36599 | A property of the biconditional. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ↔ (𝜑 ↔ 𝜓))) | ||
| Theorem | bj-imn3ani 36600 | Duplication of bnj1224 34803. Three-fold version of imnani 400. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 22-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |