HomeHome Metamath Proof Explorer
Theorem List (p. 366 of 462)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28971)
  Hilbert Space Explorer  Hilbert Space Explorer
(28972-30494)
  Users' Mathboxes  Users' Mathboxes
(30495-46134)
 

Theorem List for Metamath Proof Explorer - 36501-36600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremelfunsALTV5 36501* Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ 𝐹 ∈ Rels ))
 
TheoremelfunsALTVfunALTV 36502 The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.)
(𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))
 
TheoremfunALTVfun 36503 Our definition of the function predicate df-funALTV 36487 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6371, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.)
( FunALTV 𝐹 ↔ Fun 𝐹)
 
TheoremfunALTVss 36504 Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.)
(𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
 
TheoremfunALTVeq 36505 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
(𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
 
TheoremfunALTVeqi 36506 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 = 𝐵       ( FunALTV 𝐴 ↔ FunALTV 𝐵)
 
TheoremfunALTVeqd 36507 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
 
20.22.17  Disjoints vs. converse functions
 
Definitiondf-disjss 36508 Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 36509). It is used only by df-disjs 36509. (Contributed by Peter Mazsa, 17-Jul-2021.)
Disjss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
 
Definitiondf-disjs 36509 Define the disjoint relations class, i.e., the class of disjoints. We need Disjs for the definition of Parts and Part for the Partition-Equivalence Theorems: this need for Parts as disjoint relations on their domain quotients is the reason why we must define Disjs instead of simply using converse functions (cf. dfdisjALTV 36518).

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36532. Alternate definitions are dfdisjs 36513, ... , dfdisjs5 36517. (Contributed by Peter Mazsa, 17-Jul-2021.)

Disjs = ( Disjss ∩ Rels )
 
Definitiondf-disjALTV 36510 Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV 36518, see the comment of df-disjs 36509 why we need disjoint relations instead of converse functions anyway.

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36532. Alternate definitions are dfdisjALTV 36518, ... , dfdisjALTV5 36522. (Contributed by Peter Mazsa, 17-Jul-2021.)

( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
 
Definitiondf-eldisjs 36511 Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36534. (Contributed by Peter Mazsa, 28-Nov-2022.)
ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
 
Definitiondf-eldisj 36512 Define the disjoint elementhood relation predicate, i.e., the disjoint elementhood predicate. Read: the elements of 𝐴 are disjoint. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36534.

As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 36580 with dfeldisj5 36526. See also the comments of ~? dfmembpart2 and of ~? df-parts . (Contributed by Peter Mazsa, 17-Jul-2021.)

( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
 
Theoremdfdisjs 36513 Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.)
Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
 
Theoremdfdisjs2 36514 Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
 
Theoremdfdisjs3 36515* Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ∀𝑢𝑣𝑥((𝑢𝑟𝑥𝑣𝑟𝑥) → 𝑢 = 𝑣)}
 
Theoremdfdisjs4 36516* Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥}
 
Theoremdfdisjs5 36517* Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
 
TheoremdfdisjALTV 36518 Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 36509 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.)
( Disj 𝑅 ↔ ( FunALTV 𝑅 ∧ Rel 𝑅))
 
TheoremdfdisjALTV2 36519 Alternate definition of the disjoint relation predicate, cf. dffunALTV2 36493. (Contributed by Peter Mazsa, 27-Jul-2021.)
( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
 
TheoremdfdisjALTV3 36520* Alternate definition of the disjoint relation predicate, cf. dffunALTV3 36494. (Contributed by Peter Mazsa, 28-Jul-2021.)
( Disj 𝑅 ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
 
TheoremdfdisjALTV4 36521* Alternate definition of the disjoint relation predicate, cf. dffunALTV4 36495. (Contributed by Peter Mazsa, 5-Sep-2021.)
( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
 
TheoremdfdisjALTV5 36522* Alternate definition of the disjoint relation predicate, cf. dffunALTV5 36496. (Contributed by Peter Mazsa, 5-Sep-2021.)
( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
 
Theoremdfeldisj2 36523 Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ≀ ( E ↾ 𝐴) ⊆ I )
 
Theoremdfeldisj3 36524* Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)𝑢 = 𝑣)
 
Theoremdfeldisj4 36525* Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
 
Theoremdfeldisj5 36526* Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
 
Theoremeldisjs 36527 Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.)
(𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
 
Theoremeldisjs2 36528 Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))
 
Theoremeldisjs3 36529* Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅 ∈ Disjs ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels ))
 
Theoremeldisjs4 36530* Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥𝑅 ∈ Rels ))
 
Theoremeldisjs5 36531* Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
(𝑅𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )))
 
Theoremeldisjsdisj 36532 The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.)
(𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
 
Theoremeleldisjs 36533 Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.)
(𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
 
Theoremeleldisjseldisj 36534 The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.)
(𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))
 
Theoremdisjrel 36535 Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.)
( Disj 𝑅 → Rel 𝑅)
 
Theoremdisjss 36536 Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
(𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))
 
Theoremdisjssi 36537 Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.)
𝐴𝐵       ( Disj 𝐵 → Disj 𝐴)
 
Theoremdisjssd 36538 Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.)
(𝜑𝐴𝐵)       (𝜑 → ( Disj 𝐵 → Disj 𝐴))
 
Theoremdisjeq 36539 Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.)
(𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
 
Theoremdisjeqi 36540 Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.)
𝐴 = 𝐵       ( Disj 𝐴 ↔ Disj 𝐵)
 
Theoremdisjeqd 36541 Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵))
 
Theoremdisjdmqseqeq1 36542 Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021.)
(𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)))
 
Theoremeldisjss 36543 Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))
 
Theoremeldisjssi 36544 Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.)
𝐴𝐵       ( ElDisj 𝐵 → ElDisj 𝐴)
 
Theoremeldisjssd 36545 Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.)
(𝜑𝐴𝐵)       (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴))
 
Theoremeldisjeq 36546 Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
 
Theoremeldisjeqi 36547 Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.)
𝐴 = 𝐵       ( ElDisj 𝐴 ↔ ElDisj 𝐵)
 
Theoremeldisjeqd 36548 Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
 
Theoremdisjxrn 36549 Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
 
Theoremdisjorimxrn 36550 Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
(( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))
 
Theoremdisjimxrn 36551 Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
( Disj 𝑆 → Disj (𝑅𝑆))
 
Theoremdisjimres 36552 Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.)
( Disj 𝑅 → Disj (𝑅𝐴))
 
Theoremdisjimin 36553 Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.)
( Disj 𝑆 → Disj (𝑅𝑆))
 
Theoremdisjiminres 36554 Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.)
( Disj 𝑆 → Disj (𝑅 ∩ (𝑆𝐴)))
 
Theoremdisjimxrnres 36555 Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.)
( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆𝐴)))
 
TheoremdisjALTV0 36556 The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.)
Disj ∅
 
TheoremdisjALTVid 36557 The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.)
Disj I
 
TheoremdisjALTVidres 36558 The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.)
Disj ( I ↾ 𝐴)
 
TheoremdisjALTVinidres 36559 The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Disj (𝑅 ∩ ( I ↾ 𝐴))
 
TheoremdisjALTVxrnidres 36560 The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.)
Disj (𝑅 ⋉ ( I ↾ 𝐴))
 
20.23  Mathbox for Rodolfo Medina
 
20.23.1  Partitions
 
Theoremprtlem60 36561 Lemma for prter3 36590. (Contributed by Rodolfo Medina, 9-Oct-2010.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜓 → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒𝜏)))
 
Theorembicomdd 36562 Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theoremjca2r 36563 Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010.)
(𝜑 → (𝜓𝜒))    &   (𝜓𝜃)       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theoremjca3 36564 Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.)
(𝜑 → (𝜓𝜒))    &   (𝜃𝜏)       (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
 
Theoremprtlem70 36565 Lemma for prter3 36590: a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010.)
((((𝜓𝜂) ∧ ((𝜑𝜃) ∧ (𝜒𝜏))) ∧ 𝜑) ↔ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ (𝜃𝜏)))) ∧ 𝜂))
 
Theoremibdr 36566 Reverse of ibd 272. (Contributed by Rodolfo Medina, 30-Sep-2010.)
(𝜑 → (𝜒 → (𝜓𝜒)))       (𝜑 → (𝜒𝜓))
 
Theoremprtlem100 36567 Lemma for prter3 36590. (Contributed by Rodolfo Medina, 19-Oct-2010.)
(∃𝑥𝐴 (𝐵𝑥𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵𝑥𝜑))
 
Theoremprtlem5 36568* Lemma for prter1 36587, prter2 36589, prter3 36590 and prtex 36588. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥𝐴 (𝑢𝑥𝑣𝑥) ↔ ∃𝑥𝐴 (𝑟𝑥𝑠𝑥))
 
Theoremprtlem80 36569 Lemma for prter2 36589. (Contributed by Rodolfo Medina, 17-Oct-2010.)
(𝐴𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴}))
 
Theorembrabsb2 36570* A closed form of brabsb 5401. (Contributed by Rodolfo Medina, 13-Oct-2010.)
(𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theoremeqbrrdv2 36571* Other version of eqbrrdiv 5653. (Contributed by Rodolfo Medina, 30-Sep-2010.)
(((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦𝑥𝐵𝑦))       (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
 
Theoremprtlem9 36572* Lemma for prter3 36590. (Contributed by Rodolfo Medina, 25-Sep-2010.)
(𝐴𝐵 → ∃𝑥𝐵 [𝑥] = [𝐴] )
 
Theoremprtlem10 36573* Lemma for prter3 36590. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
( Er 𝐴 → (𝑧𝐴 → (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧 ∈ [𝑣] 𝑤 ∈ [𝑣] ))))
 
Theoremprtlem11 36574 Lemma for prter2 36589. (Contributed by Rodolfo Medina, 12-Oct-2010.)
(𝐵𝐷 → (𝐶𝐴 → (𝐵 = [𝐶] 𝐵 ∈ (𝐴 / ))))
 
Theoremprtlem12 36575* Lemma for prtex 36588 and prter3 36590. (Contributed by Rodolfo Medina, 13-Oct-2010.)
( = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)} → Rel )
 
Theoremprtlem13 36576* Lemma for prter1 36587, prter2 36589, prter3 36590 and prtex 36588. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
 
Theoremprtlem16 36577* Lemma for prtex 36588, prter2 36589 and prter3 36590. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       dom = 𝐴
 
Theoremprtlem400 36578* Lemma for prter2 36589 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}        ¬ ∅ ∈ ( 𝐴 / )
 
Syntaxwprt 36579 Extend the definition of a wff to include the partition predicate.
wff Prt 𝐴
 
Definitiondf-prt 36580* Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010.)
(Prt 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
 
Theoremerprt 36581 The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.)
( Er 𝑋 → Prt (𝐴 / ))
 
Theoremprtlem14 36582* Lemma for prter1 36587, prter2 36589 and prtex 36588. (Contributed by Rodolfo Medina, 13-Oct-2010.)
(Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → ((𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦)))
 
Theoremprtlem15 36583* Lemma for prter1 36587 and prtex 36588. (Contributed by Rodolfo Medina, 13-Oct-2010.)
(Prt 𝐴 → (∃𝑥𝐴𝑦𝐴 ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → ∃𝑧𝐴 (𝑢𝑧𝑣𝑧)))
 
Theoremprtlem17 36584* Lemma for prter2 36589. (Contributed by Rodolfo Medina, 15-Oct-2010.)
(Prt 𝐴 → ((𝑥𝐴𝑧𝑥) → (∃𝑦𝐴 (𝑧𝑦𝑤𝑦) → 𝑤𝑥)))
 
Theoremprtlem18 36585* Lemma for prter2 36589. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
 
Theoremprtlem19 36586* Lemma for prter2 36589. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
 
Theoremprter1 36587* Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       (Prt 𝐴 Er 𝐴)
 
Theoremprtex 36588* The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       (Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V))
 
Theoremprter2 36589* The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
 
Theoremprter3 36590* For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}       ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
 
20.24  Mathbox for Norm Megill

We are sad to report the passing of Metamath creator and long-time contributor Norm Megill (1950 - 2021).

Norm of course was the author of the Metamath proof language, the specification, all of the early tools (and some of the later ones), and the foundational work in logic and set theory for set.mm.

His tools, now at https://github.com/metamath/metamath-exe , include a proof verifier, a proof assistant, a proof minimizer, style checking and reformatting, and tools for searching and displaying proofs.

One of his key insights was that formal proofs can exist not only to be verified by computers, but also to be read by humans. Both the specification of the proof format (which stores full proofs, as opposed to the proof templates used by most proof assistants) and the generated web display of Metamath proofs, one of its distinctive features, contribute to this double objective.

Metamath innovated both by using a very simple substitution rule (and then using that to build more complicated notions like free and bound variables) and also by taking the axiom schemas found in many theories and taking them to the next level - by making all axioms, theorems and proofs operate in terms of schemas.

Not content to create Metamath for his own amusement, he also published it for the world and encouraged the development of a community of people who contributed to it and created their own tools. He was an active participant in the Metamath mailing list and other forums until days before his passing.

It is often our custom to supply a quote from someone memorialized in a mathbox entry. And it is difficult to select a quote for someone who has written so much about Metamath over the years. But here is one quote from the Metamath web page which illustrates not just his clear thinking about what Metamath can and cannot do but also his desire to encourage students at all levels:

Q: Will Metamath help me learn abstract mathematics? A: Yes, but probably not by itself. In order to follow a proof in an advanced math textbook, you may need to know prerequisites that could take years to learn. Some people find this frustrating. In contrast, Metamath uses a single, simple substitution rule that allows you to follow any proof mechanically. You can actually jump in anywhere and be convinced that the symbol string you see in a proof step is a consequence of the symbol strings in the earlier steps that it references, even if you don't understand what the symbols mean. But this is quite different from understanding the meaning of the math that results. Metamath alone probably will not give you an intuitive feel for abstract math, in the same way it can be hard to grasp a large computer program just by reading its source code, even though you may understand each individual instruction. However, the Bibliographic Cross-Reference lets you compare informal proofs in math textbooks and see all the implicit missing details "left to the reader."

 
20.24.1  Obsolete schemes ax-c4,c5,c7,c10,c11,c11n,c15,c9,c14,c16

These older axiom schemes are obsolete and should not be used outside of this section. They are proved above as theorems axc4 , sp 2180, axc7 2316, axc10 2382, axc11 2427, axc11n 2423, axc15 2419, axc9 2379, axc14 2460, and axc16 2258.

 
Axiomax-c5 36591 Axiom of Specialization. A universally quantified wff implies the wff without the universal quantifier (i.e., an instance, or special case, of the generalized wff). In other words, if something is true for all 𝑥, then it is true for any specific 𝑥 (that would typically occur as a free variable in the wff substituted for 𝜑). (A free variable is one that does not occur in the scope of a quantifier: 𝑥 and 𝑦 are both free in 𝑥 = 𝑦, but only 𝑥 is free in 𝑦𝑥 = 𝑦.) Axiom scheme C5' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom B5 of [Tarski] p. 67 (under his system S2, defined in the last paragraph on p. 77).

Note that the converse of this axiom does not hold in general, but a weaker inference form of the converse holds and is expressed as rule ax-gen 1803. Conditional forms of the converse are given by ax-13 2369, ax-c14 36599, ax-c16 36600, and ax-5 1918.

Unlike the more general textbook Axiom of Specialization, we cannot choose a variable different from 𝑥 for the special case. In our axiomatization, that requires the assistance of equality axioms, and we deal with it later after we introduce the definition of proper substitution (see stdpc4 2074).

An interesting alternate axiomatization uses axc5c711 36626 and ax-c4 36592 in place of ax-c5 36591, ax-4 1817, ax-10 2141, and ax-11 2158.

This axiom is obsolete and should no longer be used. It is proved above as Theorem sp 2180. (Contributed by NM, 3-Jan-1993.) Use sp 2180 instead. (New usage is discouraged.)

(∀𝑥𝜑𝜑)
 
Axiomax-c4 36592 Axiom of Quantified Implication. This axiom moves a universal quantifier from outside to inside an implication, quantifying 𝜓. Notice that 𝑥 must not be a free variable in the antecedent of the quantified implication, and we express this by binding 𝜑 to "protect" the axiom from a 𝜑 containing a free 𝑥. Axiom scheme C4' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Lemma 5 of [Monk2] p. 108 and Axiom 5 of [Mendelson] p. 69.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc4 2320. (Contributed by NM, 3-Jan-1993.) (New usage is discouraged.)

(∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Axiomax-c7 36593 Axiom of Quantified Negation. This axiom is used to manipulate negated quantifiers. Equivalent to axiom scheme C7' in [Megill] p. 448 (p. 16 of the preprint). An alternate axiomatization could use axc5c711 36626 in place of ax-c5 36591, ax-c7 36593, and ax-11 2158.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc7 2316. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

(¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
 
Axiomax-c10 36594 A variant of ax6 2381. Axiom scheme C10' in [Megill] p. 448 (p. 16 of the preprint).

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc10 2382. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Axiomax-c11 36595 Axiom ax-c11 36595 was the original version of ax-c11n 36596 ("n" for "new"), before it was discovered (in May 2008) that the shorter ax-c11n 36596 could replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of the preprint).

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc11 2427. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Axiomax-c11n 36596 Axiom of Quantifier Substitution. One of the equality and substitution axioms of predicate calculus with equality. Appears as Lemma L12 in [Megill] p. 445 (p. 12 of the preprint).

The original version of this axiom was ax-c11 36595 and was replaced with this shorter ax-c11n 36596 ("n" for "new") in May 2008. The old axiom is proved from this one as Theorem axc11 2427. Conversely, this axiom is proved from ax-c11 36595 as Theorem axc11nfromc11 36634.

This axiom was proved redundant in July 2015. See Theorem axc11n 2423.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc11n 2423. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Axiomax-c15 36597 Axiom ax-c15 36597 was the original version of ax-12 2175, before it was discovered (in Jan. 2007) that the shorter ax-12 2175 could replace it. It appears as Axiom scheme C15' in [Megill] p. 448 (p. 16 of the preprint). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. To understand this theorem more easily, think of "¬ ∀𝑥𝑥 = 𝑦..." as informally meaning "if 𝑥 and 𝑦 are distinct variables then..." The antecedent becomes false if the same variable is substituted for 𝑥 and 𝑦, ensuring the theorem is sound whenever this is the case. In some later theorems, we call an antecedent of the form ¬ ∀𝑥𝑥 = 𝑦 a "distinctor."

Interestingly, if the wff expression substituted for 𝜑 contains no wff variables, the resulting statement can be proved without invoking this axiom. This means that even though this axiom is metalogically independent from the others, it is not logically independent. Specifically, we can prove any wff-variable-free instance of Axiom ax-c15 36597 (from which the ax-12 2175 instance follows by Theorem ax12 2420.) The proof is by induction on formula length, using ax12eq 36649 and ax12el 36650 for the basis steps and ax12indn 36651, ax12indi 36652, and ax12inda 36656 for the induction steps. (This paragraph is true provided we use ax-c11 36595 in place of ax-c11n 36596.)

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc15 2419, which should be used instead. (Contributed by NM, 14-May-1993.) (New usage is discouraged.)

(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Axiomax-c9 36598 Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever 𝑧 is distinct from 𝑥 and 𝑦, and 𝑥 = 𝑦 is true, then 𝑥 = 𝑦 quantified with 𝑧 is also true. In other words, 𝑧 is irrelevant to the truth of 𝑥 = 𝑦. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc9 2379. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
 
Axiomax-c14 36599 Axiom of Quantifier Introduction. One of the equality and substitution axioms for a non-logical predicate in our predicate calculus with equality. Axiom scheme C14' in [Megill] p. 448 (p. 16 of the preprint). It is redundant if we include ax-5 1918; see Theorem axc14 2460. Alternately, ax-5 1918 becomes unnecessary in principle with this axiom, but we lose the more powerful metalogic afforded by ax-5 1918. We retain ax-c14 36599 here to provide completeness for systems with the simpler metalogic that results from omitting ax-5 1918, which might be easier to study for some theoretical purposes.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc14 2460. (Contributed by NM, 24-Jun-1993.) (New usage is discouraged.)

(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
 
Axiomax-c16 36600* Axiom of Distinct Variables. The only axiom of predicate calculus requiring that variables be distinct (if we consider ax-5 1918 to be a metatheorem and not an axiom). Axiom scheme C16' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases. It is a somewhat bizarre axiom since the antecedent is always false in set theory (see dtru 5252), but nonetheless it is technically necessary as you can see from its uses.

This axiom is redundant if we include ax-5 1918; see Theorem axc16 2258. Alternately, ax-5 1918 becomes logically redundant in the presence of this axiom, but without ax-5 1918 we lose the more powerful metalogic that results from being able to express the concept of a setvar variable not occurring in a wff (as opposed to just two setvar variables being distinct). We retain ax-c16 36600 here to provide logical completeness for systems with the simpler metalogic that results from omitting ax-5 1918, which might be easier to study for some theoretical purposes.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc16 2258. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46134
  Copyright terms: Public domain < Previous  Next >