Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sngleq Structured version   Visualization version   GIF version

Theorem bj-sngleq 35157
Description: Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sngleq (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)

Proof of Theorem bj-sngleq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3343 . . 3 (𝐴 = 𝐵 → (∃𝑦𝐴 𝑥 = {𝑦} ↔ ∃𝑦𝐵 𝑥 = {𝑦}))
21abbidv 2807 . 2 (𝐴 = 𝐵 → {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = {𝑦}})
3 df-bj-sngl 35156 . 2 sngl 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}}
4 df-bj-sngl 35156 . 2 sngl 𝐵 = {𝑥 ∣ ∃𝑦𝐵 𝑥 = {𝑦}}
52, 3, 43eqtr4g 2803 1 (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  wrex 3065  {csn 4561  sngl bj-csngl 35155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-ral 3069  df-rex 3070  df-bj-sngl 35156
This theorem is referenced by:  bj-tageq  35166
  Copyright terms: Public domain W3C validator