Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sngleq | Structured version Visualization version GIF version |
Description: Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-sngleq | ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3343 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} ↔ ∃𝑦 ∈ 𝐵 𝑥 = {𝑦})) | |
2 | 1 | abbidv 2807 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = {𝑦}}) |
3 | df-bj-sngl 35156 | . 2 ⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} | |
4 | df-bj-sngl 35156 | . 2 ⊢ sngl 𝐵 = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = {𝑦}} | |
5 | 2, 3, 4 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∃wrex 3065 {csn 4561 sngl bj-csngl 35155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ral 3069 df-rex 3070 df-bj-sngl 35156 |
This theorem is referenced by: bj-tageq 35166 |
Copyright terms: Public domain | W3C validator |