| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sngleq | Structured version Visualization version GIF version | ||
| Description: Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-sngleq | ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3288 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} ↔ ∃𝑦 ∈ 𝐵 𝑥 = {𝑦})) | |
| 2 | 1 | abbidv 2797 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = {𝑦}}) |
| 3 | df-bj-sngl 37010 | . 2 ⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} | |
| 4 | df-bj-sngl 37010 | . 2 ⊢ sngl 𝐵 = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = {𝑦}} | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2709 ∃wrex 3056 {csn 4573 sngl bj-csngl 37009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rex 3057 df-bj-sngl 37010 |
| This theorem is referenced by: bj-tageq 37020 |
| Copyright terms: Public domain | W3C validator |