Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sngleq Structured version   Visualization version   GIF version

Theorem bj-sngleq 36304
Description: Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sngleq (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)

Proof of Theorem bj-sngleq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3313 . . 3 (𝐴 = 𝐵 → (∃𝑦𝐴 𝑥 = {𝑦} ↔ ∃𝑦𝐵 𝑥 = {𝑦}))
21abbidv 2793 . 2 (𝐴 = 𝐵 → {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = {𝑦}})
3 df-bj-sngl 36303 . 2 sngl 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}}
4 df-bj-sngl 36303 . 2 sngl 𝐵 = {𝑥 ∣ ∃𝑦𝐵 𝑥 = {𝑦}}
52, 3, 43eqtr4g 2789 1 (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  {cab 2701  wrex 3062  {csn 4620  sngl bj-csngl 36302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-rex 3063  df-bj-sngl 36303
This theorem is referenced by:  bj-tageq  36313
  Copyright terms: Public domain W3C validator