Detailed syntax breakdown of Definition df-carsg
Step | Hyp | Ref
| Expression |
1 | | ccarsg 32268 |
. 2
class
toCaraSiga |
2 | | vm |
. . 3
setvar 𝑚 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | ve |
. . . . . . . . . 10
setvar 𝑒 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑒 |
6 | | va |
. . . . . . . . . 10
setvar 𝑎 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑎 |
8 | 5, 7 | cin 3886 |
. . . . . . . 8
class (𝑒 ∩ 𝑎) |
9 | 2 | cv 1538 |
. . . . . . . 8
class 𝑚 |
10 | 8, 9 | cfv 6433 |
. . . . . . 7
class (𝑚‘(𝑒 ∩ 𝑎)) |
11 | 5, 7 | cdif 3884 |
. . . . . . . 8
class (𝑒 ∖ 𝑎) |
12 | 11, 9 | cfv 6433 |
. . . . . . 7
class (𝑚‘(𝑒 ∖ 𝑎)) |
13 | | cxad 12846 |
. . . . . . 7
class
+𝑒 |
14 | 10, 12, 13 | co 7275 |
. . . . . 6
class ((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) |
15 | 5, 9 | cfv 6433 |
. . . . . 6
class (𝑚‘𝑒) |
16 | 14, 15 | wceq 1539 |
. . . . 5
wff ((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒) |
17 | 9 | cdm 5589 |
. . . . . . 7
class dom 𝑚 |
18 | 17 | cuni 4839 |
. . . . . 6
class ∪ dom 𝑚 |
19 | 18 | cpw 4533 |
. . . . 5
class 𝒫
∪ dom 𝑚 |
20 | 16, 4, 19 | wral 3064 |
. . . 4
wff
∀𝑒 ∈
𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒) |
21 | 20, 6, 19 | crab 3068 |
. . 3
class {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)} |
22 | 2, 3, 21 | cmpt 5157 |
. 2
class (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) |
23 | 1, 22 | wceq 1539 |
1
wff toCaraSiga
= (𝑚 ∈ V ↦
{𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) |