Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgval Structured version   Visualization version   GIF version

Theorem carsgval 31635
Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
carsgval (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Distinct variable groups:   𝑀,𝑎,𝑒   𝑂,𝑎,𝑒   𝜑,𝑎,𝑒
Allowed substitution hints:   𝑉(𝑒,𝑎)

Proof of Theorem carsgval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-carsg 31634 . 2 toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
2 simpr 488 . . . . . . . 8 ((𝜑𝑚 = 𝑀) → 𝑚 = 𝑀)
32dmeqd 5751 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
54fdmd 6504 . . . . . . . 8 (𝜑 → dom 𝑀 = 𝒫 𝑂)
65adantr 484 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑀 = 𝒫 𝑂)
73, 6eqtrd 2857 . . . . . 6 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
87unieqd 4827 . . . . 5 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
9 unipw 5320 . . . . 5 𝒫 𝑂 = 𝑂
108, 9syl6eq 2873 . . . 4 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝑂)
1110pweqd 4530 . . 3 ((𝜑𝑚 = 𝑀) → 𝒫 dom 𝑚 = 𝒫 𝑂)
12 fveq1 6651 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
13 fveq1 6651 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
1412, 13oveq12d 7158 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))))
15 fveq1 6651 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑒) = (𝑀𝑒))
1614, 15eqeq12d 2838 . . . . 5 (𝑚 = 𝑀 → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1716adantl 485 . . . 4 ((𝜑𝑚 = 𝑀) → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1811, 17raleqbidv 3382 . . 3 ((𝜑𝑚 = 𝑀) → (∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1911, 18rabeqbidv 3461 . 2 ((𝜑𝑚 = 𝑀) → {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)} = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
20 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2120pwexd 5257 . . 3 (𝜑 → 𝒫 𝑂 ∈ V)
22 fex 6971 . . 3 ((𝑀:𝒫 𝑂⟶(0[,]+∞) ∧ 𝒫 𝑂 ∈ V) → 𝑀 ∈ V)
234, 21, 22syl2anc 587 . 2 (𝜑𝑀 ∈ V)
24 pwexg 5256 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
25 rabexg 5210 . . 3 (𝒫 𝑂 ∈ V → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
2620, 24, 253syl 18 . 2 (𝜑 → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
271, 19, 23, 26fvmptd2 6758 1 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wral 3130  {crab 3134  Vcvv 3469  cdif 3905  cin 3907  𝒫 cpw 4511   cuni 4813  dom cdm 5532  wf 6330  cfv 6334  (class class class)co 7140  0cc0 10526  +∞cpnf 10661   +𝑒 cxad 12493  [,]cicc 12729  toCaraSigaccarsg 31633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-carsg 31634
This theorem is referenced by:  carsgcl  31636  elcarsg  31637
  Copyright terms: Public domain W3C validator