Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgval Structured version   Visualization version   GIF version

Theorem carsgval 34268
Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
carsgval (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Distinct variable groups:   𝑀,𝑎,𝑒   𝑂,𝑎,𝑒   𝜑,𝑎,𝑒
Allowed substitution hints:   𝑉(𝑒,𝑎)

Proof of Theorem carsgval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-carsg 34267 . 2 toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
2 simpr 484 . . . . . . . 8 ((𝜑𝑚 = 𝑀) → 𝑚 = 𝑀)
32dmeqd 5930 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
54fdmd 6757 . . . . . . . 8 (𝜑 → dom 𝑀 = 𝒫 𝑂)
65adantr 480 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑀 = 𝒫 𝑂)
73, 6eqtrd 2780 . . . . . 6 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
87unieqd 4944 . . . . 5 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
9 unipw 5470 . . . . 5 𝒫 𝑂 = 𝑂
108, 9eqtrdi 2796 . . . 4 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝑂)
1110pweqd 4639 . . 3 ((𝜑𝑚 = 𝑀) → 𝒫 dom 𝑚 = 𝒫 𝑂)
12 fveq1 6919 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
13 fveq1 6919 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
1412, 13oveq12d 7466 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))))
15 fveq1 6919 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑒) = (𝑀𝑒))
1614, 15eqeq12d 2756 . . . . 5 (𝑚 = 𝑀 → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1716adantl 481 . . . 4 ((𝜑𝑚 = 𝑀) → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1811, 17raleqbidv 3354 . . 3 ((𝜑𝑚 = 𝑀) → (∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1911, 18rabeqbidv 3462 . 2 ((𝜑𝑚 = 𝑀) → {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)} = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
20 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2120pwexd 5397 . . 3 (𝜑 → 𝒫 𝑂 ∈ V)
224, 21fexd 7264 . 2 (𝜑𝑀 ∈ V)
23 pwexg 5396 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
24 rabexg 5355 . . 3 (𝒫 𝑂 ∈ V → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
2520, 23, 243syl 18 . 2 (𝜑 → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
261, 19, 22, 25fvmptd2 7037 1 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  𝒫 cpw 4622   cuni 4931  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321   +𝑒 cxad 13173  [,]cicc 13410  toCaraSigaccarsg 34266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-carsg 34267
This theorem is referenced by:  carsgcl  34269  elcarsg  34270
  Copyright terms: Public domain W3C validator