Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgval Structured version   Visualization version   GIF version

Theorem carsgval 31556
Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
carsgval (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Distinct variable groups:   𝑀,𝑎,𝑒   𝑂,𝑎,𝑒   𝜑,𝑎,𝑒
Allowed substitution hints:   𝑉(𝑒,𝑎)

Proof of Theorem carsgval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-carsg 31555 . 2 toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
2 simpr 487 . . . . . . . 8 ((𝜑𝑚 = 𝑀) → 𝑚 = 𝑀)
32dmeqd 5768 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
54fdmd 6517 . . . . . . . 8 (𝜑 → dom 𝑀 = 𝒫 𝑂)
65adantr 483 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑀 = 𝒫 𝑂)
73, 6eqtrd 2856 . . . . . 6 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
87unieqd 4841 . . . . 5 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
9 unipw 5334 . . . . 5 𝒫 𝑂 = 𝑂
108, 9syl6eq 2872 . . . 4 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝑂)
1110pweqd 4543 . . 3 ((𝜑𝑚 = 𝑀) → 𝒫 dom 𝑚 = 𝒫 𝑂)
12 fveq1 6663 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
13 fveq1 6663 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
1412, 13oveq12d 7168 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))))
15 fveq1 6663 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑒) = (𝑀𝑒))
1614, 15eqeq12d 2837 . . . . 5 (𝑚 = 𝑀 → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1716adantl 484 . . . 4 ((𝜑𝑚 = 𝑀) → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1811, 17raleqbidv 3401 . . 3 ((𝜑𝑚 = 𝑀) → (∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1911, 18rabeqbidv 3485 . 2 ((𝜑𝑚 = 𝑀) → {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)} = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
20 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2120pwexd 5272 . . 3 (𝜑 → 𝒫 𝑂 ∈ V)
22 fex 6983 . . 3 ((𝑀:𝒫 𝑂⟶(0[,]+∞) ∧ 𝒫 𝑂 ∈ V) → 𝑀 ∈ V)
234, 21, 22syl2anc 586 . 2 (𝜑𝑀 ∈ V)
24 pwexg 5271 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
25 rabexg 5226 . . 3 (𝒫 𝑂 ∈ V → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
2620, 24, 253syl 18 . 2 (𝜑 → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
271, 19, 23, 26fvmptd2 6770 1 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  cdif 3932  cin 3934  𝒫 cpw 4538   cuni 4831  dom cdm 5549  wf 6345  cfv 6349  (class class class)co 7150  0cc0 10531  +∞cpnf 10666   +𝑒 cxad 12499  [,]cicc 12735  toCaraSigaccarsg 31554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-carsg 31555
This theorem is referenced by:  carsgcl  31557  elcarsg  31558
  Copyright terms: Public domain W3C validator