Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgval Structured version   Visualization version   GIF version

Theorem carsgval 30815
Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
carsgval (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Distinct variable groups:   𝑀,𝑎,𝑒   𝑂,𝑎,𝑒   𝜑,𝑎,𝑒
Allowed substitution hints:   𝑉(𝑒,𝑎)

Proof of Theorem carsgval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-carsg 30814 . . 3 toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
21a1i 11 . 2 (𝜑 → toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)}))
3 simpr 477 . . . . . . . 8 ((𝜑𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5496 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
5 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
65fdmd 6234 . . . . . . . 8 (𝜑 → dom 𝑀 = 𝒫 𝑂)
76adantr 472 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑀 = 𝒫 𝑂)
84, 7eqtrd 2799 . . . . . 6 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
98unieqd 4606 . . . . 5 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
10 unipw 5076 . . . . 5 𝒫 𝑂 = 𝑂
119, 10syl6eq 2815 . . . 4 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝑂)
1211pweqd 4322 . . 3 ((𝜑𝑚 = 𝑀) → 𝒫 dom 𝑚 = 𝒫 𝑂)
13 fveq1 6376 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
14 fveq1 6376 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
1513, 14oveq12d 6862 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))))
16 fveq1 6376 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑒) = (𝑀𝑒))
1715, 16eqeq12d 2780 . . . . 5 (𝑚 = 𝑀 → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1817adantl 473 . . . 4 ((𝜑𝑚 = 𝑀) → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1912, 18raleqbidv 3300 . . 3 ((𝜑𝑚 = 𝑀) → (∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
2012, 19rabeqbidv 3344 . 2 ((𝜑𝑚 = 𝑀) → {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)} = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
21 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2221pwexd 5017 . . 3 (𝜑 → 𝒫 𝑂 ∈ V)
23 fex 6684 . . 3 ((𝑀:𝒫 𝑂⟶(0[,]+∞) ∧ 𝒫 𝑂 ∈ V) → 𝑀 ∈ V)
245, 22, 23syl2anc 579 . 2 (𝜑𝑀 ∈ V)
25 pwexg 5016 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
26 rabexg 4974 . . 3 (𝒫 𝑂 ∈ V → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
2721, 25, 263syl 18 . 2 (𝜑 → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
282, 20, 24, 27fvmptd 6479 1 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  {crab 3059  Vcvv 3350  cdif 3731  cin 3733  𝒫 cpw 4317   cuni 4596  cmpt 4890  dom cdm 5279  wf 6066  cfv 6070  (class class class)co 6844  0cc0 10191  +∞cpnf 10327   +𝑒 cxad 12147  [,]cicc 12383  toCaraSigaccarsg 30813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6847  df-carsg 30814
This theorem is referenced by:  carsgcl  30816  elcarsg  30817
  Copyright terms: Public domain W3C validator