Step | Hyp | Ref
| Expression |
1 | | df-carsg 32269 |
. 2
⊢
toCaraSiga = (𝑚
∈ V ↦ {𝑎 ∈
𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) |
2 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) |
3 | 2 | dmeqd 5814 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
4 | | carsgval.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
5 | 4 | fdmd 6611 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑀 = 𝒫 𝑂) |
6 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → dom 𝑀 = 𝒫 𝑂) |
7 | 3, 6 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂) |
8 | 7 | unieqd 4853 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → ∪ dom
𝑚 = ∪ 𝒫 𝑂) |
9 | | unipw 5366 |
. . . . 5
⊢ ∪ 𝒫 𝑂 = 𝑂 |
10 | 8, 9 | eqtrdi 2794 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → ∪ dom
𝑚 = 𝑂) |
11 | 10 | pweqd 4552 |
. . 3
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → 𝒫 ∪ dom 𝑚 = 𝒫 𝑂) |
12 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑚‘(𝑒 ∩ 𝑎)) = (𝑀‘(𝑒 ∩ 𝑎))) |
13 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑚‘(𝑒 ∖ 𝑎)) = (𝑀‘(𝑒 ∖ 𝑎))) |
14 | 12, 13 | oveq12d 7293 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = ((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎)))) |
15 | | fveq1 6773 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (𝑚‘𝑒) = (𝑀‘𝑒)) |
16 | 14, 15 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒) ↔ ((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒))) |
17 | 16 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → (((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒) ↔ ((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒))) |
18 | 11, 17 | raleqbidv 3336 |
. . 3
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → (∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒))) |
19 | 11, 18 | rabeqbidv 3420 |
. 2
⊢ ((𝜑 ∧ 𝑚 = 𝑀) → {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)} = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) |
20 | | carsgval.1 |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
21 | 20 | pwexd 5302 |
. . 3
⊢ (𝜑 → 𝒫 𝑂 ∈ V) |
22 | 4, 21 | fexd 7103 |
. 2
⊢ (𝜑 → 𝑀 ∈ V) |
23 | | pwexg 5301 |
. . 3
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V) |
24 | | rabexg 5255 |
. . 3
⊢
(𝒫 𝑂 ∈
V → {𝑎 ∈
𝒫 𝑂 ∣
∀𝑒 ∈ 𝒫
𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)} ∈ V) |
25 | 20, 23, 24 | 3syl 18 |
. 2
⊢ (𝜑 → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)} ∈ V) |
26 | 1, 19, 22, 25 | fvmptd2 6883 |
1
⊢ (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) |