HomeHome Metamath Proof Explorer
Theorem List (p. 336 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 33501-33600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremidlsrgtset 33501* Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)    &   𝐼 = (LIdeal‘𝑅)    &   𝐽 = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})       (𝑅𝑉𝐽 = (TopSet‘𝑆))
 
Theoremidlsrgmulrval 33502 Value of the ring multiplication for the ideals of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)    &   𝐵 = (LIdeal‘𝑅)    &    = (.r𝑆)    &   𝐺 = (mulGrp‘𝑅)    &    · = (LSSum‘𝐺)    &   (𝜑𝑅𝑉)    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)       (𝜑 → (𝐼 𝐽) = ((RSpan‘𝑅)‘(𝐼 · 𝐽)))
 
Theoremidlsrgmulrcl 33503 Ideals of a ring 𝑅 are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)    &   𝐵 = (LIdeal‘𝑅)    &    = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)       (𝜑 → (𝐼 𝐽) ∈ 𝐵)
 
Theoremidlsrgmulrss1 33504 In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)    &   𝐵 = (LIdeal‘𝑅)    &    = (.r𝑆)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)       (𝜑 → (𝐼 𝐽) ⊆ 𝐼)
 
Theoremidlsrgmulrss2 33505 The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)    &   𝐵 = (LIdeal‘𝑅)    &    = (.r𝑆)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)       (𝜑 → (𝐼 𝐽) ⊆ 𝐽)
 
Theoremidlsrgmulrssin 33506 In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)    &   𝐵 = (LIdeal‘𝑅)    &    = (.r𝑆)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)       (𝜑 → (𝐼 𝐽) ⊆ (𝐼𝐽))
 
Theoremidlsrgmnd 33507 The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)       (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
 
Theoremidlsrgcmnd 33508 The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝑆 = (IDLsrg‘𝑅)       (𝑅 ∈ Ring → 𝑆 ∈ CMnd)
 
21.3.9.40  Prime Elements
 
Theoremrprmval 33509* The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    = (∥r𝑅)       (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
 
Theoremisrprm 33510* Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
 
Theoremrprmcl 33511 A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   (𝜑𝑅𝑉)    &   (𝜑𝑋𝑃)       (𝜑𝑋𝐵)
 
Theoremrprmdvds 33512 If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅𝑉)    &   (𝜑𝑄𝑃)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑄 (𝑋 · 𝑌))       (𝜑 → (𝑄 𝑋𝑄 𝑌))
 
Theoremrprmnz 33513 A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.)
𝑃 = (RPrime‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅𝑉)    &   (𝜑𝑄𝑃)       (𝜑𝑄0 )
 
Theoremrprmnunit 33514 A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.)
𝑃 = (RPrime‘𝑅)    &   𝑈 = (Unit‘𝑅)    &   (𝜑𝑅𝑉)    &   (𝜑𝑄𝑃)       (𝜑 → ¬ 𝑄𝑈)
 
Theoremrsprprmprmidl 33515 In a commutative ring, ideals generated by prime elements are prime ideals. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐾 = (RSpan‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑃 ∈ (RPrime‘𝑅))       (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅))
 
Theoremrsprprmprmidlb 33516 In an integral domain, an ideal generated by a single element is a prime iff that element is prime. (Contributed by Thierry Arnoux, 18-May-2025.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝑋𝑃 ↔ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)))
 
Theoremrprmndvdsr1 33517 A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025.)
1 = (1r𝑅)    &    = (∥r𝑅)    &   𝑃 = (RPrime‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑄𝑃)       (𝜑 → ¬ 𝑄 1 )
 
Theoremrprmasso 33518 In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝑋𝑃)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑌 𝑋)       (𝜑𝑌𝑃)
 
Theoremrprmasso2 33519 In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝑋𝑃)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑌𝑃)       (𝜑𝑌 𝑋)
 
Theoremrprmasso3 33520* In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝑋𝑃)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑌𝑃)    &    · = (.r𝑅)    &   𝑈 = (Unit‘𝑅)       (𝜑 → ∃𝑡𝑈 (𝑡 · 𝑋) = 𝑌)
 
Theoremunitmulrprm 33521 A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝑃 = (RPrime‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐼𝑈)    &   (𝜑𝑄𝑃)       (𝜑 → (𝐼 · 𝑄) ∈ 𝑃)
 
Theoremrprmndvdsru 33522 A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025.)
𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑄𝑃)    &   (𝜑𝑇𝑈)       (𝜑 → ¬ 𝑄 𝑇)
 
Theoremrprmirredlem 33523 Lemma for rprmirred 33524. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    = (∥r𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝑄0 )    &   (𝜑𝑋 ∈ (𝐵𝑈))    &   (𝜑𝑌𝐵)    &   (𝜑𝑄 = (𝑋 · 𝑌))    &   (𝜑𝑄 𝑋)       (𝜑𝑌𝑈)
 
Theoremrprmirred 33524 In an integral domain, ring primes are irreducible. (Contributed by Thierry Arnoux, 18-May-2025.)
𝑃 = (RPrime‘𝑅)    &   𝐼 = (Irred‘𝑅)    &   (𝜑𝑄𝑃)    &   (𝜑𝑅 ∈ IDomn)       (𝜑𝑄𝐼)
 
Theoremrprmirredb 33525 In a principal ideal domain, the converse of rprmirred 33524 holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025.)
𝑃 = (RPrime‘𝑅)    &   𝐼 = (Irred‘𝑅)    &   (𝜑𝑅 ∈ PID)       (𝜑𝐼 = 𝑃)
 
Theoremrprmdvdspow 33526 If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &   𝑀 = (mulGrp‘𝑅)    &    = (.g𝑀)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑄𝑃)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑄 (𝑁 𝑋))       (𝜑𝑄 𝑋)
 
Theoremrprmdvdsprod 33527* If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.)
𝐵 = (Base‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    = (∥r𝑅)    &    1 = (1r𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑄𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝐹 finSupp 1 )    &   (𝜑𝐹:𝐼𝐵)    &   (𝜑𝑄 (𝑀 Σg 𝐹))       (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
 
Theorem1arithidomlem1 33528* Lemma for 1arithidom 33530. (Contributed by Thierry Arnoux, 30-May-2025.)
𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)    &   𝐽 = (0..^(♯‘𝐹))    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐹 ∈ Word 𝑃)    &   (𝜑𝐺 ∈ Word 𝑃)    &   (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))    &   (𝜑𝑄𝑃)    &   (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))    &   (𝜑𝐻 ∈ Word 𝑃)    &   (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))    &   (𝜑𝐾 ∈ (0..^(♯‘𝐻)))    &   (𝜑𝑄(∥r𝑅)(𝐻𝐾))    &   (𝜑𝑇𝑈)    &   (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))    &   (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))    &   (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))    &   (𝜑𝑁𝑈)    &   (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))       (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
 
Theorem1arithidomlem2 33529* Lemma for 1arithidom 33530: induction step. (Contributed by Thierry Arnoux, 27-May-2025.)
𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)    &   𝐽 = (0..^(♯‘𝐹))    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐹 ∈ Word 𝑃)    &   (𝜑𝐺 ∈ Word 𝑃)    &   (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))    &   (𝜑𝑄𝑃)    &   (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))    &   (𝜑𝐻 ∈ Word 𝑃)    &   (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))    &   (𝜑𝐾 ∈ (0..^(♯‘𝐻)))    &   (𝜑𝑄(∥r𝑅)(𝐻𝐾))    &   (𝜑𝑇𝑈)    &   (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))    &   (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))    &   (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))    &   (𝜑𝑁𝑈)    &   (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))    &   (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))    &   (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))    &   (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))       (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
 
Theorem1arithidom 33530* Uniqueness of prime factorizations in an integral domain 𝑅. Given two equal products 𝐹 and 𝐺 of prime elements, 𝐹 and 𝐺 are equal up to a renumbering 𝑤 and a multiplication by units 𝑢. See also 1arith 16974. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 27-May-2025.)
𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)    &   𝐽 = (0..^(♯‘𝐹))    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐹 ∈ Word 𝑃)    &   (𝜑𝐺 ∈ Word 𝑃)    &   (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))       (𝜑 → ∃𝑤𝑢 ∈ (𝑈m 𝐽)(𝑤:𝐽1-1-onto𝐽𝐺 = (𝑢f · (𝐹𝑤))))
 
21.3.9.41  Unique factorization domains
 
Syntaxcufd 33531 Class of unique factorization domains.
class UFD
 
Definitiondf-ufd 33532* Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025.) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025.)
UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
 
Theoremisufd 33533* The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝐼 = (PrmIdeal‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖𝑃) ≠ ∅))
 
Theoremufdprmidl 33534* In a unique factorization domain 𝑅, a nonzero prime ideal 𝐽 contains a prime element 𝑝. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝐼 = (PrmIdeal‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ UFD)    &   (𝜑𝐽𝐼)    &   (𝜑𝐽 ≠ { 0 })       (𝜑 → ∃𝑝𝑃 𝑝𝐽)
 
Theoremufdidom 33535 A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
(𝜑𝑅 ∈ UFD)       (𝜑𝑅 ∈ IDomn)
 
Theorempidufd 33536 Every principal ideal domain is a unique factorization domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
(𝜑𝑅 ∈ PID)       (𝜑𝑅 ∈ UFD)
 
Theorem1arithufdlem1 33537* Lemma for 1arithufd 33541. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ UFD)    &   (𝜑 → ¬ 𝑅 ∈ DivRing)    &   𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}       (𝜑𝑆 ≠ ∅)
 
Theorem1arithufdlem2 33538* Lemma for 1arithufd 33541. The set 𝑆 of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ UFD)    &   (𝜑 → ¬ 𝑅 ∈ DivRing)    &   𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}    &    · = (.r𝑅)    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋 · 𝑌) ∈ 𝑆)
 
Theorem1arithufdlem3 33539* Lemma for 1arithufd 33541. If a product (𝑌 · 𝑋) can be written as a product of primes, with 𝑋 non-unit, nonzero, so can 𝑋. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ UFD)    &   (𝜑 → ¬ 𝑅 ∈ DivRing)    &   𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}    &   (𝜑𝑋𝐵)    &   (𝜑 → ¬ 𝑋𝑈)    &   (𝜑𝑋0 )    &    · = (.r𝑅)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑌 · 𝑋) ∈ 𝑆)       (𝜑𝑋𝑆)
 
Theorem1arithufdlem4 33540* Lemma for 1arithufd 33541. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ UFD)    &   (𝜑 → ¬ 𝑅 ∈ DivRing)    &   𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}    &   (𝜑𝑋𝐵)    &   (𝜑 → ¬ 𝑋𝑈)    &   (𝜑𝑋0 )       (𝜑𝑋𝑆)
 
Theorem1arithufd 33541* Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33530, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ UFD)    &   (𝜑𝑋𝐵)    &   (𝜑 → ¬ 𝑋𝑈)    &   (𝜑𝑋0 )       (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))
 
Theoremdfufd2lem 33542 Lemma for dfufd2 33543. (Contributed by Thierry Arnoux, 6-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐼 ∈ (PrmIdeal‘𝑅))    &   (𝜑𝐹 ∈ Word 𝑃)    &   (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)    &   (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )       (𝜑 → (𝐼𝑃) ≠ ∅)
 
Theoremdfufd2 33543* Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑃 = (RPrime‘𝑅)    &   𝑀 = (mulGrp‘𝑅)       (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
 
21.3.9.42  The ring of integers
 
Theoremzringidom 33544 The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.)
ring ∈ IDomn
 
Theoremzringpid 33545 The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025.)
ring ∈ PID
 
Theoremdfprm3 33546 The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025.)
ℙ = (ℕ ∩ (RPrime‘ℤring))
 
Theoremzringfrac 33547* The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025.)
𝑄 = (ℂflds ℚ)    &    = (ℤring ~RL (ℤ ∖ {0}))    &   𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )       𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
 
21.3.9.43  Univariate Polynomials
 
Theorem0ringmon1p 33548 There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
𝑀 = (Monic1p𝑅)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑 → (♯‘𝐵) = 1)       (𝜑𝑀 = ∅)
 
Theoremfply1 33549 Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑃 = (Base‘(Poly1𝑅))    &   (𝜑𝐹:(ℕ0m 1o)⟶𝐵)    &   (𝜑𝐹 finSupp 0 )       (𝜑𝐹𝑃)
 
Theoremply1lvec 33550 In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025.)
𝑃 = (Poly1𝑅)    &   (𝜑𝑅 ∈ DivRing)       (𝜑𝑃 ∈ LVec)
 
Theoremevls1fn 33551 Functionality of the subring polynomial evaluation. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑃 = (Poly1‘(𝑅s 𝑆))    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))       (𝜑𝑂 Fn 𝑈)
 
Theoremevls1dm 33552 The domain of the subring polynomial evaluation function. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑃 = (Poly1‘(𝑅s 𝑆))    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))       (𝜑 → dom 𝑂 = 𝑈)
 
Theoremevls1fvf 33553 The subring evaluation function for a univariate polynomial as a function, with domain and codomain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑃 = (Poly1‘(𝑅s 𝑆))    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑄𝑈)       (𝜑 → (𝑂𝑄):𝐵𝐵)
 
Theoremevl1fvf 33554 The univariate polynomial evaluation function as a function, with domain and codomain. (Contributed by Thierry Arnoux, 8-Jun-2025.)
𝑂 = (eval1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ CRing)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑄𝑈)       (𝜑 → (𝑂𝑄):𝐵𝐵)
 
Theoremevl1fpws 33555* Evaluation of a univariate polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.)
𝑂 = (eval1𝑅)    &   𝑊 = (Poly1𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑈 = (Base‘𝑊)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑀𝑈)    &    · = (.r𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   𝐴 = (coe1𝑀)       (𝜑 → (𝑂𝑀) = (𝑥𝐵 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
 
Theoremressdeg1 33556 The degree of a univariate polynomial in a structure restriction. (Contributed by Thierry Arnoux, 20-Jan-2025.)
𝐻 = (𝑅s 𝑇)    &   𝐷 = (deg1𝑅)    &   𝑈 = (Poly1𝐻)    &   𝐵 = (Base‘𝑈)    &   (𝜑𝑃𝐵)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))       (𝜑 → (𝐷𝑃) = ((deg1𝐻)‘𝑃))
 
Theoremressply10g 33557 A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025.)
𝑆 = (Poly1𝑅)    &   𝐻 = (𝑅s 𝑇)    &   𝑈 = (Poly1𝐻)    &   𝐵 = (Base‘𝑈)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))    &   𝑍 = (0g𝑆)       (𝜑𝑍 = (0g𝑈))
 
Theoremressply1mon1p 33558 The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.)
𝑆 = (Poly1𝑅)    &   𝐻 = (𝑅s 𝑇)    &   𝑈 = (Poly1𝐻)    &   𝐵 = (Base‘𝑈)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))    &   𝑀 = (Monic1p𝑅)    &   𝑁 = (Monic1p𝐻)       (𝜑𝑁 = (𝐵𝑀))
 
Theoremressply1invg 33559 An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.)
𝑆 = (Poly1𝑅)    &   𝐻 = (𝑅s 𝑇)    &   𝑈 = (Poly1𝐻)    &   𝐵 = (Base‘𝑈)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))    &   𝑃 = (𝑆s 𝐵)    &   (𝜑𝑋𝐵)       (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))
 
Theoremressply1sub 33560 A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.)
𝑆 = (Poly1𝑅)    &   𝐻 = (𝑅s 𝑇)    &   𝑈 = (Poly1𝐻)    &   𝐵 = (Base‘𝑈)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))    &   𝑃 = (𝑆s 𝐵)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))
 
Theoremressasclcl 33561 Closure of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝑊 = (Poly1𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐴 = (algSc‘𝑊)    &   𝐵 = (Base‘𝑊)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)       (𝜑 → (𝐴𝑋) ∈ 𝐵)
 
Theoremevls1subd 33562 Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.)
𝑄 = (𝑆 evalSub1 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝑊 = (Poly1𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑊)    &   𝐷 = (-g𝑊)    &    = (-g𝑆)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑀𝐵)    &   (𝜑𝑁𝐵)    &   (𝜑𝐶𝐾)       (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
 
Theoremdeg1le0eq0 33563 A polynomial with nonpositive degree is the zero polynomial iff its constant term is zero. Biconditional version of deg1scl 26172. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝐷 = (deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑂 = (0g𝑃)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑 → (𝐷𝐹) ≤ 0)       (𝜑 → (𝐹 = 𝑂 ↔ ((coe1𝐹)‘0) = 0 ))
 
Theoremply1asclunit 33564 A non-zero scalar polynomial over a field 𝐹 is a unit. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑃 = (Poly1𝐹)    &   𝐴 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐹)    &    0 = (0g𝐹)    &   (𝜑𝐹 ∈ Field)    &   (𝜑𝑌𝐵)    &   (𝜑𝑌0 )       (𝜑 → (𝐴𝑌) ∈ (Unit‘𝑃))
 
Theoremply1unit 33565 In a field 𝐹, a polynomial 𝐶 is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit 33564. (Contributed by Thierry Arnoux, 25-Apr-2025.)
𝑃 = (Poly1𝐹)    &   𝐴 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐹)    &    0 = (0g𝐹)    &   (𝜑𝐹 ∈ Field)    &   𝐷 = (deg1𝐹)    &   (𝜑𝐶 ∈ (Base‘𝑃))       (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))
 
Theoremevl1deg1 33566 Evaluation of a univariate polynomial of degree 1. (Contributed by Thierry Arnoux, 8-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑂 = (eval1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝑈 = (Base‘𝑃)    &    · = (.r𝑅)    &    + = (+g𝑅)    &   𝐶 = (coe1𝑀)    &   𝐷 = (deg1𝑅)    &   𝐴 = (𝐶‘1)    &   𝐵 = (𝐶‘0)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑀𝑈)    &   (𝜑 → (𝐷𝑀) = 1)    &   (𝜑𝑋𝐾)       (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵))
 
Theoremevl1deg2 33567 Evaluation of a univariate polynomial of degree 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑂 = (eval1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝑈 = (Base‘𝑃)    &    · = (.r𝑅)    &    + = (+g𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   𝐹 = (coe1𝑀)    &   𝐸 = (deg1𝑅)    &   𝐴 = (𝐹‘2)    &   𝐵 = (𝐹‘1)    &   𝐶 = (𝐹‘0)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑀𝑈)    &   (𝜑 → (𝐸𝑀) = 2)    &   (𝜑𝑋𝐾)       (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
 
Theoremevl1deg3 33568 Evaluation of a univariate polynomial of degree 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑂 = (eval1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝑈 = (Base‘𝑃)    &    · = (.r𝑅)    &    + = (+g𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   𝐹 = (coe1𝑀)    &   𝐸 = (deg1𝑅)    &   𝐴 = (𝐹‘3)    &   𝐵 = (𝐹‘2)    &   𝐶 = (𝐹‘1)    &   𝐷 = (𝐹‘0)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑀𝑈)    &   (𝜑 → (𝐸𝑀) = 3)    &   (𝜑𝑋𝐾)       (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
 
Theoremply1dg1rt 33569 Express the root 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑂 = (eval1𝑅)    &   𝐷 = (deg1𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Field)    &   (𝜑𝐺𝑈)    &   (𝜑 → (𝐷𝐺) = 1)    &   𝑁 = (invg𝑅)    &    / = (/r𝑅)    &   𝐶 = (coe1𝐺)    &   𝐴 = (𝐶‘1)    &   𝐵 = (𝐶‘0)    &   𝑍 = ((𝑁𝐵) / 𝐴)       (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})
 
Theoremply1dg1rtn0 33570 Polynomials of degree 1 over a field always have some roots. (Contributed by Thierry Arnoux, 8-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑂 = (eval1𝑅)    &   𝐷 = (deg1𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Field)    &   (𝜑𝐺𝑈)    &   (𝜑 → (𝐷𝐺) = 1)       (𝜑 → ((𝑂𝐺) “ { 0 }) ≠ ∅)
 
Theoremply1mulrtss 33571 The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑂 = (eval1𝑅)    &   𝐷 = (deg1𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐹𝑈)    &   (𝜑𝐺𝑈)    &    · = (.r𝑃)       (𝜑 → ((𝑂𝐹) “ { 0 }) ⊆ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }))
 
Theoremply1dg3rt0irred 33572 If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025.)
0 = (0g𝐹)    &   𝑂 = (eval1𝐹)    &   𝐷 = (deg1𝐹)    &   𝑃 = (Poly1𝐹)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐹 ∈ Field)    &   (𝜑𝑄𝐵)    &   (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)    &   (𝜑 → (𝐷𝑄) = 3)       (𝜑𝑄 ∈ (Irred‘𝑃))
 
Theoremm1pmeq 33573 If two monic polynomials 𝐼 and 𝐽 differ by a unit factor 𝐾, then they are equal. (Contributed by Thierry Arnoux, 27-Apr-2025.)
𝑃 = (Poly1𝐹)    &   𝑀 = (Monic1p𝐹)    &   𝑈 = (Unit‘𝑃)    &    · = (.r𝑃)    &   (𝜑𝐹 ∈ Field)    &   (𝜑𝐼𝑀)    &   (𝜑𝐽𝑀)    &   (𝜑𝐾𝑈)    &   (𝜑𝐼 = (𝐾 · 𝐽))       (𝜑𝐼 = 𝐽)
 
Theoremply1fermltl 33574 Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.)
𝑍 = (ℤ/nℤ‘𝑃)    &   𝑊 = (Poly1𝑍)    &   𝑋 = (var1𝑍)    &    + = (+g𝑊)    &   𝑁 = (mulGrp‘𝑊)    &    = (.g𝑁)    &   𝐶 = (algSc‘𝑊)    &   𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸))    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐸 ∈ ℤ)       (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))
 
Theoremcoe1mon 33575* Coefficient vector of a monomial. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑁 ∈ ℕ0)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝜑 → (coe1‘(𝑁 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑁, 1 , 0 )))
 
Theoremply1moneq 33576 Two monomials are equal iff their powers are equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &   (𝜑𝑅 ∈ NzRing)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑀 𝑋) = (𝑁 𝑋) ↔ 𝑀 = 𝑁))
 
Theoremcoe1zfv 33577 The coefficients of the zero univariate polynomial. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑍 = (0g𝑃)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((coe1𝑍)‘𝑁) = 0 )
 
Theoremcoe1vr1 33578* Polynomial coefficient of the variable. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &   (𝜑𝑅 ∈ Ring)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝜑 → (coe1𝑋) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 1, 1 , 0 )))
 
Theoremdeg1vr 33579 The degree of the variable polynomial is 1. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐷 = (deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &   (𝜑𝑅 ∈ NzRing)       (𝜑 → (𝐷𝑋) = 1)
 
Theoremply1degltel 33580 Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝐷 = (deg1𝑅)    &   𝑆 = (𝐷 “ (-∞[,)𝑁))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑃)       (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))
 
Theoremply1degleel 33581 Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝐷 = (deg1𝑅)    &   𝑆 = (𝐷 “ (-∞[,)𝑁))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑃)       (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
 
Theoremply1degltlss 33582 The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝐷 = (deg1𝑅)    &   𝑆 = (𝐷 “ (-∞[,)𝑁))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑅 ∈ Ring)       (𝜑𝑆 ∈ (LSubSp‘𝑃))
 
Theoremgsummoncoe1fzo 33583* A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &   (𝜑𝑅 ∈ Ring)    &   𝐾 = (Base‘𝑅)    &    = ( ·𝑠𝑃)    &    0 = (0g𝑅)    &   (𝜑 → ∀𝑘 ∈ (0..^𝑁)𝐴𝐾)    &   (𝜑𝐿 ∈ (0..^𝑁))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝑘 = 𝐿𝐴 = 𝐶)       (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ (0..^𝑁) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐶)
 
Theoremply1gsumz 33584* If a polynomial given as a sum of scaled monomials by factors 𝐴 is the zero polynomial, then all factors 𝐴 are zero. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑅 ∈ Ring)    &   𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))    &    0 = (0g𝑅)    &   𝑍 = (0g𝑃)    &   (𝜑𝐴:(0..^𝑁)⟶𝐵)    &   (𝜑 → (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) = 𝑍)       (𝜑𝐴 = ((0..^𝑁) × { 0 }))
 
Theoremdeg1addlt 33585 If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. See also deg1addle 26160. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑌 = (Poly1𝑅)    &   𝐷 = (deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐿 ∈ ℝ*)    &   (𝜑 → (𝐷𝐹) < 𝐿)    &   (𝜑 → (𝐷𝐺) < 𝐿)       (𝜑 → (𝐷‘(𝐹 + 𝐺)) < 𝐿)
 
Theoremig1pnunit 33586 The polynomial ideal generator is not a unit polynomial. (Contributed by Thierry Arnoux, 19-Mar-2025.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝐼 ∈ (LIdeal‘𝑃))    &   (𝜑𝐼𝑈)       (𝜑 → ¬ (𝐺𝐼) ∈ (Unit‘𝑃))
 
Theoremig1pmindeg 33587 The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝐼 ∈ (LIdeal‘𝑃))    &   𝐷 = (deg1𝑅)    &    0 = (0g𝑃)    &   (𝜑𝐹𝐼)    &   (𝜑𝐹0 )       (𝜑 → (𝐷‘(𝐺𝐼)) ≤ (𝐷𝐹))
 
21.3.9.44  Polynomial quotient and polynomial remainder
 
Theoremq1pdir 33588 Distribution of univariate polynomial quotient over addition. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &    / = (quot1p𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑈)    &   (𝜑𝐶𝑁)    &   (𝜑𝐵𝑈)    &    + = (+g𝑃)       (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
 
Theoremq1pvsca 33589 Scalar multiplication property of the polynomial division. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &    / = (quot1p𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑈)    &   (𝜑𝐶𝑁)    &    × = ( ·𝑠𝑃)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐵𝐾)       (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))
 
Theoremr1pvsca 33590 Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &   𝐸 = (rem1p𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑈)    &   (𝜑𝐷𝑁)    &    × = ( ·𝑠𝑃)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐵𝐾)       (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))
 
Theoremr1p0 33591 Polynomial remainder operation of a division of the zero polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &   𝐸 = (rem1p𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐷𝑁)    &    0 = (0g𝑃)       (𝜑 → ( 0 𝐸𝐷) = 0 )
 
Theoremr1pcyc 33592 The polynomial remainder operation is periodic. See modcyc 13957. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &   𝐸 = (rem1p𝑅)    &    + = (+g𝑃)    &    · = (.r𝑃)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑁)    &   (𝜑𝐶𝑈)       (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵))
 
Theoremr1padd1 33593 Addition property of the polynomial remainder operation, similar to modadd1 13959. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &   𝐸 = (rem1p𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑈)    &   (𝜑𝐷𝑁)    &   (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))    &    + = (+g𝑃)    &   (𝜑𝐵𝑈)    &   (𝜑𝐶𝑈)       (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
 
Theoremr1pid2OLD 33594 Obsolete version of r1pid2 26221 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 2-Apr-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝑁 = (Unic1p𝑅)    &   𝐸 = (rem1p𝑅)    &   (𝜑𝑅 ∈ IDomn)    &   𝐷 = (deg1𝑅)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑁)       (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
 
Theoremr1plmhm 33595* The univariate polynomial remainder function 𝐹 is a module homomorphism. Its image (𝐹s 𝑃) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝐸 = (rem1p𝑅)    &   𝑁 = (Unic1p𝑅)    &   𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝑁)       (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
 
Theoremr1pquslmic 33596* The univariate polynomial remainder ring (𝐹s 𝑃) is module isomorphic with the quotient ring. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑃 = (Poly1𝑅)    &   𝑈 = (Base‘𝑃)    &   𝐸 = (rem1p𝑅)    &   𝑁 = (Unic1p𝑅)    &   𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝑁)    &    0 = (0g𝑃)    &   𝐾 = (𝐹 “ { 0 })    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝐾))       (𝜑𝑄𝑚 (𝐹s 𝑃))
 
21.3.9.45  The subring algebra
 
Theoremsra1r 33597 The unity element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑1 = (1r𝑊))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑1 = (1r𝐴))
 
Theoremsradrng 33598 Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.)
𝐴 = ((subringAlg ‘𝑅)‘𝑉)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)
 
Theoremsrasubrg 33599 A subring of the original structure is also a subring of the constructed subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑈 ∈ (SubRing‘𝑊))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑𝑈 ∈ (SubRing‘𝐴))
 
Theoremsralvec 33600 Given a sub division ring 𝐹 of a division ring 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐹 = (𝐸s 𝑈)       ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >