![]() |
Metamath
Proof Explorer Theorem List (p. 336 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | idlsrgtset 33501* | Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopSet‘𝑆)) | ||
Theorem | idlsrgmulrval 33502 | Value of the ring multiplication for the ideals of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼 · 𝐽))) | ||
Theorem | idlsrgmulrcl 33503 | Ideals of a ring 𝑅 are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ∈ 𝐵) | ||
Theorem | idlsrgmulrss1 33504 | In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) | ||
Theorem | idlsrgmulrss2 33505 | The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) | ||
Theorem | idlsrgmulrssin 33506 | In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ (𝐼 ∩ 𝐽)) | ||
Theorem | idlsrgmnd 33507 | The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Mnd) | ||
Theorem | idlsrgcmnd 33508 | The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ CMnd) | ||
Theorem | rprmval 33509* | The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) | ||
Theorem | isrprm 33510* | Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) | ||
Theorem | rprmcl 33511 | A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | rprmdvds 33512 | If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) ⇒ ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) | ||
Theorem | rprmnz 33513 | A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑄 ≠ 0 ) | ||
Theorem | rprmnunit 33514 | A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) | ||
Theorem | rsprprmprmidl 33515 | In a commutative ring, ideals generated by prime elements are prime ideals. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ (RPrime‘𝑅)) ⇒ ⊢ (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅)) | ||
Theorem | rsprprmprmidlb 33516 | In an integral domain, an ideal generated by a single element is a prime iff that element is prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑃 ↔ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅))) | ||
Theorem | rprmndvdsr1 33517 | A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∥ 1 ) | ||
Theorem | rprmasso 33518 | In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∥ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑃) | ||
Theorem | rprmasso2 33519 | In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑌 ∥ 𝑋) | ||
Theorem | rprmasso3 33520* | In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 (𝑡 · 𝑋) = 𝑌) | ||
Theorem | unitmulrprm 33521 | A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) | ||
Theorem | rprmndvdsru 33522 | A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∥ 𝑇) | ||
Theorem | rprmirredlem 33523 | Lemma for rprmirred 33524. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑄 ≠ 0 ) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) & ⊢ (𝜑 → 𝑄 ∥ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑈) | ||
Theorem | rprmirred 33524 | In an integral domain, ring primes are irreducible. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐼) | ||
Theorem | rprmirredb 33525 | In a principal ideal domain, the converse of rprmirred 33524 holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ PID) ⇒ ⊢ (𝜑 → 𝐼 = 𝑃) | ||
Theorem | rprmdvdspow 33526 | If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑄 ∥ (𝑁 ↑ 𝑋)) ⇒ ⊢ (𝜑 → 𝑄 ∥ 𝑋) | ||
Theorem | rprmdvdsprod 33527* | If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 1 ) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑄 ∥ (𝑀 Σg 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥)) | ||
Theorem | 1arithidomlem1 33528* | Lemma for 1arithidom 33530. (Contributed by Thierry Arnoux, 30-May-2025.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐽 = (0..^(♯‘𝐹)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) & ⊢ (𝜑 → 𝐻 ∈ Word 𝑃) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑈 (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑘 · (𝑀 Σg 𝐻))) & ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐻))) & ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐻‘𝐾)) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) & ⊢ (𝜑 → (𝑇 · 𝑄) = (𝐻‘𝐾)) & ⊢ (𝜑 → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) & ⊢ (𝜑 → (𝐻 ∘ 𝑆) = (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) & ⊢ (𝜑 → 𝑁 ∈ 𝑈) & ⊢ (𝜑 → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑁 · (𝑀 Σg 𝐻))) ⇒ ⊢ (𝜑 → ∃𝑐∃𝑑 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐)))) | ||
Theorem | 1arithidomlem2 33529* | Lemma for 1arithidom 33530: induction step. (Contributed by Thierry Arnoux, 27-May-2025.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐽 = (0..^(♯‘𝐹)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) & ⊢ (𝜑 → 𝐻 ∈ Word 𝑃) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑈 (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑘 · (𝑀 Σg 𝐻))) & ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐻))) & ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐻‘𝐾)) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) & ⊢ (𝜑 → (𝑇 · 𝑄) = (𝐻‘𝐾)) & ⊢ (𝜑 → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) & ⊢ (𝜑 → (𝐻 ∘ 𝑆) = (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) & ⊢ (𝜑 → 𝑁 ∈ 𝑈) & ⊢ (𝜑 → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑁 · (𝑀 Σg 𝐻))) & ⊢ (𝜑 → 𝐷 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))) & ⊢ (𝜑 → 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))) & ⊢ (𝜑 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷 ∘f · (𝐹 ∘ 𝐶))) ⇒ ⊢ (𝜑 → (((𝐶 ++ 〈“(♯‘𝐹)”〉) ∘ ◡𝑆):(0..^(♯‘(𝐹 ++ 〈“𝑄”〉)))–1-1-onto→(0..^(♯‘(𝐹 ++ 〈“𝑄”〉))) ∧ 𝐻 = (((𝐷 ++ 〈“𝑇”〉) ∘ ◡𝑆) ∘f · ((𝐹 ++ 〈“𝑄”〉) ∘ ((𝐶 ++ 〈“(♯‘𝐹)”〉) ∘ ◡𝑆))))) | ||
Theorem | 1arithidom 33530* | Uniqueness of prime factorizations in an integral domain 𝑅. Given two equal products 𝐹 and 𝐺 of prime elements, 𝐹 and 𝐺 are equal up to a renumbering 𝑤 and a multiplication by units 𝑢. See also 1arith 16974. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 27-May-2025.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐽 = (0..^(♯‘𝐹)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑤∃𝑢 ∈ (𝑈 ↑m 𝐽)(𝑤:𝐽–1-1-onto→𝐽 ∧ 𝐺 = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) | ||
Syntax | cufd 33531 | Class of unique factorization domains. |
class UFD | ||
Definition | df-ufd 33532* | Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025.) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025.) |
⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} | ||
Theorem | isufd 33533* | The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) | ||
Theorem | ufdprmidl 33534* | In a unique factorization domain 𝑅, a nonzero prime ideal 𝐽 contains a prime element 𝑝. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐽 ≠ { 0 }) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽) | ||
Theorem | ufdidom 33535 | A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ (𝜑 → 𝑅 ∈ UFD) ⇒ ⊢ (𝜑 → 𝑅 ∈ IDomn) | ||
Theorem | pidufd 33536 | Every principal ideal domain is a unique factorization domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ (𝜑 → 𝑅 ∈ PID) ⇒ ⊢ (𝜑 → 𝑅 ∈ UFD) | ||
Theorem | 1arithufdlem1 33537* | Lemma for 1arithufd 33541. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ⇒ ⊢ (𝜑 → 𝑆 ≠ ∅) | ||
Theorem | 1arithufdlem2 33538* | Lemma for 1arithufd 33541. The set 𝑆 of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑆) | ||
Theorem | 1arithufdlem3 33539* | Lemma for 1arithufd 33541. If a product (𝑌 · 𝑋) can be written as a product of primes, with 𝑋 non-unit, nonzero, so can 𝑋. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 · 𝑋) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
Theorem | 1arithufdlem4 33540* | Lemma for 1arithufd 33541. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
Theorem | 1arithufd 33541* | Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33530, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) | ||
Theorem | dfufd2lem 33542 | Lemma for dfufd2 33543. (Contributed by Thierry Arnoux, 6-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐼 ∈ (PrmIdeal‘𝑅)) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼) & ⊢ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼 ∩ 𝑃) ≠ ∅) | ||
Theorem | dfufd2 33543* | Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) | ||
Theorem | zringidom 33544 | The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.) |
⊢ ℤring ∈ IDomn | ||
Theorem | zringpid 33545 | The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ ℤring ∈ PID | ||
Theorem | dfprm3 33546 | The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ ℙ = (ℕ ∩ (RPrime‘ℤring)) | ||
Theorem | zringfrac 33547* | The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ ∼ = (ℤring ~RL (ℤ ∖ {0})) & ⊢ 𝐹 = (𝑞 ∈ ℚ ↦ [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ) ⇒ ⊢ 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring)) | ||
Theorem | 0ringmon1p 33548 | There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) ⇒ ⊢ (𝜑 → 𝑀 = ∅) | ||
Theorem | fply1 33549 | Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) & ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝑃) | ||
Theorem | ply1lvec 33550 | In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑃 ∈ LVec) | ||
Theorem | evls1fn 33551 | Functionality of the subring polynomial evaluation. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → 𝑂 Fn 𝑈) | ||
Theorem | evls1dm 33552 | The domain of the subring polynomial evaluation function. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → dom 𝑂 = 𝑈) | ||
Theorem | evls1fvf 33553 | The subring evaluation function for a univariate polynomial as a function, with domain and codomain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑂‘𝑄):𝐵⟶𝐵) | ||
Theorem | evl1fvf 33554 | The univariate polynomial evaluation function as a function, with domain and codomain. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑂‘𝑄):𝐵⟶𝐵) | ||
Theorem | evl1fpws 33555* | Evaluation of a univariate polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ · = (.r‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐴 = (coe1‘𝑀) ⇒ ⊢ (𝜑 → (𝑂‘𝑀) = (𝑥 ∈ 𝐵 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑥)))))) | ||
Theorem | ressdeg1 33556 | The degree of a univariate polynomial in a structure restriction. (Contributed by Thierry Arnoux, 20-Jan-2025.) |
⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝐷‘𝑃) = ((deg1‘𝐻)‘𝑃)) | ||
Theorem | ressply10g 33557 | A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑍 = (0g‘𝑆) ⇒ ⊢ (𝜑 → 𝑍 = (0g‘𝑈)) | ||
Theorem | ressply1mon1p 33558 | The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑁 = (Monic1p‘𝐻) ⇒ ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) | ||
Theorem | ressply1invg 33559 | An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) | ||
Theorem | ressply1sub 33560 | A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) | ||
Theorem | ressasclcl 33561 | Closure of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝐴‘𝑋) ∈ 𝐵) | ||
Theorem | evls1subd 33562 | Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐷 = (-g‘𝑊) & ⊢ − = (-g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) | ||
Theorem | deg1le0eq0 33563 | A polynomial with nonpositive degree is the zero polynomial iff its constant term is zero. Biconditional version of deg1scl 26172. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑂 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 0) ⇒ ⊢ (𝜑 → (𝐹 = 𝑂 ↔ ((coe1‘𝐹)‘0) = 0 )) | ||
Theorem | ply1asclunit 33564 | A non-zero scalar polynomial over a field 𝐹 is a unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐴‘𝑌) ∈ (Unit‘𝑃)) | ||
Theorem | ply1unit 33565 | In a field 𝐹, a polynomial 𝐶 is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit 33564. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ 𝐷 = (deg1‘𝐹) & ⊢ (𝜑 → 𝐶 ∈ (Base‘𝑃)) ⇒ ⊢ (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷‘𝐶) = 0)) | ||
Theorem | evl1deg1 33566 | Evaluation of a univariate polynomial of degree 1. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐶 = (coe1‘𝑀) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐴 = (𝐶‘1) & ⊢ 𝐵 = (𝐶‘0) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → (𝐷‘𝑀) = 1) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵)) | ||
Theorem | evl1deg2 33567 | Evaluation of a univariate polynomial of degree 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐹 = (coe1‘𝑀) & ⊢ 𝐸 = (deg1‘𝑅) & ⊢ 𝐴 = (𝐹‘2) & ⊢ 𝐵 = (𝐹‘1) & ⊢ 𝐶 = (𝐹‘0) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → (𝐸‘𝑀) = 2) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = ((𝐴 · (2 ↑ 𝑋)) + ((𝐵 · 𝑋) + 𝐶))) | ||
Theorem | evl1deg3 33568 | Evaluation of a univariate polynomial of degree 3. (Contributed by Thierry Arnoux, 14-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐹 = (coe1‘𝑀) & ⊢ 𝐸 = (deg1‘𝑅) & ⊢ 𝐴 = (𝐹‘3) & ⊢ 𝐵 = (𝐹‘2) & ⊢ 𝐶 = (𝐹‘1) & ⊢ 𝐷 = (𝐹‘0) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → (𝐸‘𝑀) = 3) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) | ||
Theorem | ply1dg1rt 33569 | Express the root − 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ (𝜑 → 𝐺 ∈ 𝑈) & ⊢ (𝜑 → (𝐷‘𝐺) = 1) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐶 = (coe1‘𝐺) & ⊢ 𝐴 = (𝐶‘1) & ⊢ 𝐵 = (𝐶‘0) & ⊢ 𝑍 = ((𝑁‘𝐵) / 𝐴) ⇒ ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) = {𝑍}) | ||
Theorem | ply1dg1rtn0 33570 | Polynomials of degree 1 over a field always have some roots. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ (𝜑 → 𝐺 ∈ 𝑈) & ⊢ (𝜑 → (𝐷‘𝐺) = 1) ⇒ ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) ≠ ∅) | ||
Theorem | ply1mulrtss 33571 | The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) & ⊢ (𝜑 → 𝐺 ∈ 𝑈) & ⊢ · = (.r‘𝑃) ⇒ ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) | ||
Theorem | ply1dg3rt0irred 33572 | If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ 0 = (0g‘𝐹) & ⊢ 𝑂 = (eval1‘𝐹) & ⊢ 𝐷 = (deg1‘𝐹) & ⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → (◡(𝑂‘𝑄) “ { 0 }) = ∅) & ⊢ (𝜑 → (𝐷‘𝑄) = 3) ⇒ ⊢ (𝜑 → 𝑄 ∈ (Irred‘𝑃)) | ||
Theorem | m1pmeq 33573 | If two monic polynomials 𝐼 and 𝐽 differ by a unit factor 𝐾, then they are equal. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝑀 = (Monic1p‘𝐹) & ⊢ 𝑈 = (Unit‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝐼 ∈ 𝑀) & ⊢ (𝜑 → 𝐽 ∈ 𝑀) & ⊢ (𝜑 → 𝐾 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 = (𝐾 · 𝐽)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
Theorem | ply1fermltl 33574 | Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑃) & ⊢ 𝑊 = (Poly1‘𝑍) & ⊢ 𝑋 = (var1‘𝑍) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐶 = (algSc‘𝑊) & ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐸 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) | ||
Theorem | coe1mon 33575* | Coefficient vector of a monomial. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → (coe1‘(𝑁 ↑ 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑁, 1 , 0 ))) | ||
Theorem | ply1moneq 33576 | Two monomials are equal iff their powers are equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋) ↔ 𝑀 = 𝑁)) | ||
Theorem | coe1zfv 33577 | The coefficients of the zero univariate polynomial. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘𝑍)‘𝑁) = 0 ) | ||
Theorem | coe1vr1 33578* | Polynomial coefficient of the variable. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → (coe1‘𝑋) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 1, 1 , 0 ))) | ||
Theorem | deg1vr 33579 | The degree of the variable polynomial is 1. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → (𝐷‘𝑋) = 1) | ||
Theorem | ply1degltel 33580 | Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ≤ (𝑁 − 1)))) | ||
Theorem | ply1degleel 33581 | Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) < 𝑁))) | ||
Theorem | ply1degltlss 33582 | The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑃)) | ||
Theorem | gsummoncoe1fzo 33583* | A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐿 ∈ (0..^𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝑘 = 𝐿 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ (0..^𝑁) ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = 𝐶) | ||
Theorem | ply1gsumz 33584* | If a polynomial given as a sum of scaled monomials by factors 𝐴 is the zero polynomial, then all factors 𝐴 are zero. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → 𝐴:(0..^𝑁)⟶𝐵) & ⊢ (𝜑 → (𝑃 Σg (𝐴 ∘f ( ·𝑠 ‘𝑃)𝐹)) = 𝑍) ⇒ ⊢ (𝜑 → 𝐴 = ((0..^𝑁) × { 0 })) | ||
Theorem | deg1addlt 33585 | If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. See also deg1addle 26160. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → (𝐷‘𝐹) < 𝐿) & ⊢ (𝜑 → (𝐷‘𝐺) < 𝐿) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) < 𝐿) | ||
Theorem | ig1pnunit 33586 | The polynomial ideal generator is not a unit polynomial. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) & ⊢ (𝜑 → 𝐼 ≠ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝐺‘𝐼) ∈ (Unit‘𝑃)) | ||
Theorem | ig1pmindeg 33587 | The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) | ||
Theorem | q1pdir 33588 | Distribution of univariate polynomial quotient over addition. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ / = (quot1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑁) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ + = (+g‘𝑃) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
Theorem | q1pvsca 33589 | Scalar multiplication property of the polynomial division. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ / = (quot1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑁) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))) | ||
Theorem | r1pvsca 33590 | Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑁) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷))) | ||
Theorem | r1p0 33591 | Polynomial remainder operation of a division of the zero polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷 ∈ 𝑁) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝜑 → ( 0 𝐸𝐷) = 0 ) | ||
Theorem | r1pcyc 33592 | The polynomial remainder operation is periodic. See modcyc 13957. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ + = (+g‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑁) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) | ||
Theorem | r1padd1 33593 | Addition property of the polynomial remainder operation, similar to modadd1 13959. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑁) & ⊢ (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷)) & ⊢ + = (+g‘𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷)) | ||
Theorem | r1pid2OLD 33594 | Obsolete version of r1pid2 26221 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 2-Apr-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) | ||
Theorem | r1plmhm 33595* | The univariate polynomial remainder function 𝐹 is a module homomorphism. Its image (𝐹 “s 𝑃) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐹 = (𝑓 ∈ 𝑈 ↦ (𝑓𝐸𝑀)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑁) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom (𝐹 “s 𝑃))) | ||
Theorem | r1pquslmic 33596* | The univariate polynomial remainder ring (𝐹 “s 𝑃) is module isomorphic with the quotient ring. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐹 = (𝑓 ∈ 𝑈 ↦ (𝑓𝐸𝑀)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑁) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾)) ⇒ ⊢ (𝜑 → 𝑄 ≃𝑚 (𝐹 “s 𝑃)) | ||
Theorem | sra1r 33597 | The unity element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 1 = (1r‘𝑊)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → 1 = (1r‘𝐴)) | ||
Theorem | sradrng 33598 | Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) | ||
Theorem | srasubrg 33599 | A subring of the original structure is also a subring of the constructed subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑊)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐴)) | ||
Theorem | sralvec 33600 | Given a sub division ring 𝐹 of a division ring 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) ⇒ ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |