HomeHome Metamath Proof Explorer
Theorem List (p. 336 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 33501-33600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-plfl 33501* Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014.)
polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑧 ∈ (Base‘𝑟) ↦ [(𝑧( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑟 deg1 𝑞) < (𝑟 deg1 𝑝))) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓⟩)
 
Definitiondf-sfl1 33502* Temporary construction for the splitting field of a polynomial. The inputs are a field 𝑟 and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple 𝑆, 𝐹 where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field 𝑟.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝))))))
 
Definitiondf-sfl 33503* Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple 𝑆, 𝐹 where 𝑆 is the totally ordered splitting field and 𝐹 is an injective homomorphism from the original field 𝑟. (Contributed by Mario Carneiro, 2-Dec-2014.)
splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {⟨0, ⟨𝑟, ( I ↾ (Base‘𝑟))⟩⟩}))‘(♯‘𝑝)))))
 
Definitiondf-psl 33504* Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring 𝑟, a strict order on 𝑟, and a sequence 𝑝:ℕ⟶(𝒫 𝑟 ∩ Fin) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim. (Contributed by Mario Carneiro, 2-Dec-2014.)
polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ (1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ (1st𝑔) / 𝑒(1st𝑒) / 𝑠(𝑠 splitFld ran (𝑥𝑞 ↦ (𝑥 ∘ (2nd𝑔)))) / 𝑓𝑓, ((2nd𝑔) ∘ (2nd𝑓))⟩), (𝑝 ∪ {⟨0, ⟨⟨𝑟, ∅⟩, ( I ↾ (Base‘𝑟))⟩⟩}))) / 𝑓((1st ∘ (𝑓 shift 1)) HomLim (2nd𝑓)))
 
20.6.17  p-adic number fields
 
Syntaxczr 33505 Integral elements of a ring.
class ZRing
 
Syntaxcgf 33506 Galois finite field.
class GF
 
Syntaxcgfo 33507 Galois limit field.
class GF
 
Syntaxceqp 33508 Equivalence relation for df-qp 33519.
class ~Qp
 
Syntaxcrqp 33509 Equivalence relation representatives for df-qp 33519.
class /Qp
 
Syntaxcqp 33510 The set of 𝑝-adic rational numbers.
class Qp
 
Syntaxczp 33511 The set of 𝑝-adic integers. (Not to be confused with czn 20616.)
class Zp
 
Syntaxcqpa 33512 Algebraic completion of the 𝑝-adic rational numbers.
class _Qp
 
Syntaxccp 33513 Metric completion of _Qp.
class Cp
 
Definitiondf-zrng 33514 Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟)))
 
Definitiondf-gf 33515* Define the Galois finite field of order 𝑝𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.)
GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑝) / 𝑟(1st ‘(𝑟 splitFld {(Poly1𝑟) / 𝑠(var1𝑟) / 𝑥(((𝑝𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g𝑠)𝑥)})))
 
Definitiondf-gfoo 33516* Define the Galois field of order 𝑝↑+∞, as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014.)
GF = (𝑝 ∈ ℙ ↦ (ℤ/nℤ‘𝑝) / 𝑟(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {(Poly1𝑟) / 𝑠(var1𝑟) / 𝑥(((𝑝𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g𝑠)𝑥)})))
 
Definitiondf-eqp 33517* Define an equivalence relation on -indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum Σ𝑘𝑛𝑓(𝑘)(𝑝𝑘) is a multiple of 𝑝↑(𝑛 + 1) for every 𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.)
~Qp = (𝑝 ∈ ℙ ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)})
 
Definitiondf-rqp 33518* There is a unique element of (ℤ ↑m (0...(𝑝 − 1))) ~Qp -equivalent to any element of (ℤ ↑m ℤ), if the sequences are zero for sufficiently large negative values; this function selects that element. (Contributed by Mario Carneiro, 2-Dec-2014.)
/Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ {𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ(𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1)))))))
 
Definitiondf-qp 33519* Define the 𝑝-adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 10-Oct-2021.)
Qp = (𝑝 ∈ ℙ ↦ { ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ( “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏(({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ ((/Qp‘𝑝)‘(𝑓f + 𝑔)))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓𝑘) · (𝑔‘(𝑛𝑘))))))⟩} ∪ {⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}⟩}) toNrmGrp (𝑓𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((𝑓 “ (ℤ ∖ {0})), ℝ, < ))))))
 
Definitiondf-zp 33520 Define the 𝑝-adic integers, as a subset of the 𝑝-adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.)
Zp = (ZRing ∘ Qp)
 
Definitiondf-qpa 33521* Define the completion of the 𝑝-adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the 𝑛-th set the collection of polynomials with degree less than 𝑛 and with coefficients < (𝑝𝑛)). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial 𝑥↑(𝑝𝑛) − 𝑥, which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014.)
_Qp = (𝑝 ∈ ℙ ↦ (Qp‘𝑝) / 𝑟(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1𝑟) ∣ ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1𝑓)(𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))})))
 
Definitiondf-cp 33522 Define the metric completion of the algebraic completion of the 𝑝 -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.)
Cp = ( cplMetSp ∘ _Qp)
 
20.7  Mathbox for Filip Cernatescu

I hope someone will enjoy solving (proving) the simple equations, inequalities, and calculations from this mathbox. I have proved these problems (theorems) using the Milpgame proof assistant. (It can be downloaded from https://us.metamath.org/other/milpgame/milpgame.html.)

 
Theoremproblem1 33523 Practice problem 1. Clues: 5p4e9 12061 3p2e5 12054 eqtri 2766 oveq1i 7265. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
((3 + 2) + 4) = 9
 
Theoremproblem2 33524 Practice problem 2. Clues: oveq12i 7267 adddiri 10919 add4i 11129 mulcli 10913 recni 10920 2re 11977 3eqtri 2770 10re 12385 5re 11990 1re 10906 4re 11987 eqcomi 2747 5p4e9 12061 oveq1i 7265 df-3 11967. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.)
(((2 · 10) + 5) + ((1 · 10) + 4)) = ((3 · 10) + 9)
 
Theoremproblem3 33525 Practice problem 3. Clues: eqcomi 2747 eqtri 2766 subaddrii 11240 recni 10920 4re 11987 3re 11983 1re 10906 df-4 11968 addcomi 11096. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
𝐴 ∈ ℂ    &   (𝐴 + 3) = 4       𝐴 = 1
 
Theoremproblem4 33526 Practice problem 4. Clues: pm3.2i 470 eqcomi 2747 eqtri 2766 subaddrii 11240 recni 10920 7re 11996 6re 11993 ax-1cn 10860 df-7 11971 ax-mp 5 oveq1i 7265 3cn 11984 2cn 11978 df-3 11967 mulid2i 10911 subdiri 11355 mp3an 1459 mulcli 10913 subadd23 11163 oveq2i 7266 oveq12i 7267 3t2e6 12069 mulcomi 10914 subcli 11227 biimpri 227 subadd2i 11239. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 + 𝐵) = 3    &   ((3 · 𝐴) + (2 · 𝐵)) = 7       (𝐴 = 1 ∧ 𝐵 = 2)
 
Theoremproblem5 33527 Practice problem 5. Clues: 3brtr3i 5099 mpbi 229 breqtri 5095 ltaddsubi 11466 remulcli 10922 2re 11977 3re 11983 9re 12002 eqcomi 2747 mvlladdi 11169 3cn 6cn 11994 eqtr3i 2768 6p3e9 12063 addcomi 11096 ltdiv1ii 11834 6re 11993 nngt0i 11942 2nn 11976 divcan3i 11651 recni 10920 2cn 11978 2ne0 12007 mpbir 230 eqtri 2766 mulcomi 10914 3t2e6 12069 divmuli 11659. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
𝐴 ∈ ℝ    &   ((2 · 𝐴) + 3) < 9       𝐴 < 3
 
Theoremquad3 33528 Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.)
𝑋 ∈ ℂ    &   𝐴 ∈ ℂ    &   𝐴 ≠ 0    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0       (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)))
 
20.8  Mathbox for Paul Chapman
 
20.8.1  Real and complex numbers (cont.)
 
Theoremclimuzcnv 33529* Utility lemma to convert between 𝑚𝑘 and 𝑘 ∈ (ℤ𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.)
(𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
 
Theoremsinccvglem 33530* ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.)
(𝜑𝐹:ℕ⟶(ℝ ∖ {0}))    &   (𝜑𝐹 ⇝ 0)    &   𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))    &   𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))    &   (𝜑𝑀 ∈ ℕ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)       (𝜑 → (𝐺𝐹) ⇝ 1)
 
Theoremsinccvg 33531* ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1)
 
Theoremcircum 33532* The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
𝐴 = ((2 · π) / 𝑛)    &   𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))    &   𝑅 ∈ ℝ       𝑃 ⇝ ((2 · π) · 𝑅)
 
20.8.2  Miscellaneous theorems
 
Theoremelfzm12 33533 Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁)))
 
Theoremnn0seqcvg 33534* A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Inference version. (Contributed by Paul Chapman, 31-Mar-2011.)
𝐹:ℕ0⟶ℕ0    &   𝑁 = (𝐹‘0)    &   (𝑘 ∈ ℕ0 → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))       (𝐹𝑁) = 0
 
Theoremlediv2aALT 33535 Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
 
Theoremabs2sqlei 33536 The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))
 
Theoremabs2sqlti 33537 The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))
 
Theoremabs2sqle 33538 The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)))
 
Theoremabs2sqlt 33539 The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)))
 
Theoremabs2difi 33540 Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵))
 
Theoremabs2difabsi 33541 Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵))
 
20.9  Mathbox for Scott Fenton
 
20.9.1  ZFC Axioms in primitive form
 
Theoremaxextprim 33542 ax-ext 2709 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))
 
Theoremaxrepprim 33543 ax-rep 5205 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
 
Theoremaxunprim 33544 ax-un 7566 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)
 
Theoremaxpowprim 33545 ax-pow 5283 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
(∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) → 𝑥 = 𝑦)
 
Theoremaxregprim 33546 ax-reg 9281 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
(𝑥𝑦 → ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
 
Theoremaxinfprim 33547 ax-inf 9326 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.)
¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
 
Theoremaxacprim 33548 ax-ac 10146 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.)
¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
 
20.9.2  Untangled classes
 
Theoremuntelirr 33549* We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 33674). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.)
(∀𝑥𝐴 ¬ 𝑥𝑥 → ¬ 𝐴𝐴)
 
Theoremuntuni 33550* The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.)
(∀𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀𝑦𝐴𝑥𝑦 ¬ 𝑥𝑥)
 
Theoremuntsucf 33551* If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑦𝐴       (∀𝑥𝐴 ¬ 𝑥𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦𝑦)
 
Theoremunt0 33552 The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝑥 ∈ ∅ ¬ 𝑥𝑥
 
Theoremuntint 33553* If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
(∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
 
Theoremefrunt 33554* If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
( E Fr 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑥)
 
Theoremuntangtr 33555* A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.)
(Tr 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑥 ↔ ∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦))
 
20.9.3  Extra propositional calculus theorems
 
Theorem3orel2 33556 Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝜓 → ((𝜑𝜓𝜒) → (𝜑𝜒)))
 
Theorem3orel3 33557 Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.)
𝜒 → ((𝜑𝜓𝜒) → (𝜑𝜓)))
 
Theorem3pm3.2ni 33558 Triple negated disjunction introduction. (Contributed by Scott Fenton, 20-Apr-2011.)
¬ 𝜑    &    ¬ 𝜓    &    ¬ 𝜒        ¬ (𝜑𝜓𝜒)
 
Theorem3jaodd 33559 Double deduction form of 3jaoi 1425. (Contributed by Scott Fenton, 20-Apr-2011.)
(𝜑 → (𝜓 → (𝜒𝜂)))    &   (𝜑 → (𝜓 → (𝜃𝜂)))    &   (𝜑 → (𝜓 → (𝜏𝜂)))       (𝜑 → (𝜓 → ((𝜒𝜃𝜏) → 𝜂)))
 
Theorem3orit 33560 Closed form of 3ori 1422. (Contributed by Scott Fenton, 20-Apr-2011.)
((𝜑𝜓𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒))
 
Theorembiimpexp 33561 A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜓) → ((𝜓𝜑) → 𝜒)))
 
Theorem3orel13 33562 Elimination of two disjuncts in a triple disjunction. (Contributed by Scott Fenton, 9-Jun-2011.)
((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑𝜓𝜒) → 𝜓))
 
Theoremonelssex 33563* Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.)
((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
 
20.9.4  Misc. Useful Theorems
 
Theoremnepss 33564 Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011.)
(𝐴𝐵 ↔ ((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) ⊊ 𝐵))
 
Theorem3ccased 33565 Triple disjunction form of ccased 1035. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝜑 → ((𝜒𝜂) → 𝜓))    &   (𝜑 → ((𝜒𝜁) → 𝜓))    &   (𝜑 → ((𝜒𝜎) → 𝜓))    &   (𝜑 → ((𝜃𝜂) → 𝜓))    &   (𝜑 → ((𝜃𝜁) → 𝜓))    &   (𝜑 → ((𝜃𝜎) → 𝜓))    &   (𝜑 → ((𝜏𝜂) → 𝜓))    &   (𝜑 → ((𝜏𝜁) → 𝜓))    &   (𝜑 → ((𝜏𝜎) → 𝜓))       (𝜑 → (((𝜒𝜃𝜏) ∧ (𝜂𝜁𝜎)) → 𝜓))
 
Theoremdfso3 33566* Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.)
(𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
 
Theorembrtpid1 33567 A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵
 
Theorembrtpid2 33568 A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
𝐴{𝐶, ⟨𝐴, 𝐵⟩, 𝐷}𝐵
 
Theorembrtpid3 33569 A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵
 
Theoremceqsrexv2 33570* Alternate elimitation of a restricted existential quantifier, using implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017.)
(𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
 
Theoremiota5f 33571* A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017.)
𝑥𝜑    &   𝑥𝐴    &   ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))       ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
 
Theoremceqsralv2 33572* Alternate elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020.)
(𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
 
Theoremdford5 33573 A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.)
(Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))
 
Theoremjath 33574 Closed form of ja 186. Proved using the completeness script. (Proof modification is discouraged.) (Contributed by Scott Fenton, 13-Dec-2021.)
((¬ 𝜑𝜒) → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒)))
 
Theoremriotarab 33575* Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (𝑥𝐴 (𝜑𝜒))
 
Theoremreurab 33576* Restricted existential uniqueness of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥 ∈ {𝑦𝐴𝜓}𝜒 ↔ ∃!𝑥𝐴 (𝜑𝜒))
 
Theoremsnres0 33577 Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
𝐵 ∈ V       (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
 
Theoremfnssintima 33578* Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
 
Theoremxpab 33579* Cross product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.)
({𝑥𝜑} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
Theoremdfse3 33580* Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.)
(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
 
Theoremralxpes 33581* A version of ralxp 5739 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
(∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
 
Theoremot2elxp 33582 Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
 
Theoremot21std 33583 Extract the first member of an ordered triple. Deduction version. (Contributed by Scott Fenton, 21-Aug-2024.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (𝑋 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (1st ‘(1st𝑋)) = 𝐴)
 
Theoremot22ndd 33584 Extract the second member of an ordered triple. Deduction version. (Contributed by Scott Fenton, 21-Aug-2024.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (𝑋 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (2nd ‘(1st𝑋)) = 𝐵)
 
Theoremotthne 33585 Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 21-Aug-2024.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ≠ ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
 
Theoremelxpxp 33586* Membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
(𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
 
Theoremelxpxpss 33587* Version of elrel 5697 for triple cross products. (Contributed by Scott Fenton, 21-Aug-2024.)
((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴𝑅) → ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
 
Theoremralxp3f 33588* Restricted for all over a triple cross product. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑦𝜑    &   𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → (𝜑𝜓))       (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
 
Theoremralxp3 33589* Restricted for-all over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
(𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜓))       (∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
 
Theoremsbcoteq1a 33590 Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.)
(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))
 
Theoremralxp3es 33591* Restricted for-all over a triple cross product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.)
(∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
 
Theoremonunel 33592 The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremimaeqsexv 33593* Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
 
Theoremimaeqsalv 33594* Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
 
Theoremnnuni 33595 The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.)
(𝐴 ∈ ω → 𝐴 ∈ ω)
 
Theoremnnasmo 33596* Finite ordinal subtraction cancels on the left. (Contributed by Scott Fenton, 17-Oct-2024.)
(𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
 
Theoremeldifsucnn 33597* Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.)
(𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
 
Theoremrdg0n 33598 If 𝐴 is a proper class, then the recursive function generator at is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.)
𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅)
 
20.9.5  Properties of real and complex numbers
 
Theoremsqdivzi 33599 Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
 
Theoremsupfz 33600 The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.)
(𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >