Detailed syntax breakdown of Definition df-cfilu
| Step | Hyp | Ref
| Expression |
| 1 | | ccfilu 24295 |
. 2
class
CauFilu |
| 2 | | vu |
. . 3
setvar 𝑢 |
| 3 | | cust 24208 |
. . . . 5
class
UnifOn |
| 4 | 3 | crn 5686 |
. . . 4
class ran
UnifOn |
| 5 | 4 | cuni 4907 |
. . 3
class ∪ ran UnifOn |
| 6 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 8 | 7, 7 | cxp 5683 |
. . . . . . 7
class (𝑎 × 𝑎) |
| 9 | | vv |
. . . . . . . 8
setvar 𝑣 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑣 |
| 11 | 8, 10 | wss 3951 |
. . . . . 6
wff (𝑎 × 𝑎) ⊆ 𝑣 |
| 12 | | vf |
. . . . . . 7
setvar 𝑓 |
| 13 | 12 | cv 1539 |
. . . . . 6
class 𝑓 |
| 14 | 11, 6, 13 | wrex 3070 |
. . . . 5
wff
∃𝑎 ∈
𝑓 (𝑎 × 𝑎) ⊆ 𝑣 |
| 15 | 2 | cv 1539 |
. . . . 5
class 𝑢 |
| 16 | 14, 9, 15 | wral 3061 |
. . . 4
wff
∀𝑣 ∈
𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣 |
| 17 | 15 | cuni 4907 |
. . . . . 6
class ∪ 𝑢 |
| 18 | 17 | cdm 5685 |
. . . . 5
class dom ∪ 𝑢 |
| 19 | | cfbas 21352 |
. . . . 5
class
fBas |
| 20 | 18, 19 | cfv 6561 |
. . . 4
class
(fBas‘dom ∪ 𝑢) |
| 21 | 16, 12, 20 | crab 3436 |
. . 3
class {𝑓 ∈ (fBas‘dom ∪ 𝑢)
∣ ∀𝑣 ∈
𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣} |
| 22 | 2, 5, 21 | cmpt 5225 |
. 2
class (𝑢 ∈ ∪ ran UnifOn ↦ {𝑓 ∈ (fBas‘dom ∪ 𝑢)
∣ ∀𝑣 ∈
𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣}) |
| 23 | 1, 22 | wceq 1540 |
1
wff
CauFilu = (𝑢 ∈ ∪ ran
UnifOn ↦ {𝑓 ∈
(fBas‘dom ∪ 𝑢) ∣ ∀𝑣 ∈ 𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣}) |