Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfilu Structured version   Visualization version   GIF version

Theorem iscfilu 22935
 Description: The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
iscfilu (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Distinct variable groups:   𝑣,𝑎,𝐹   𝑣,𝑈
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑣,𝑎)

Proof of Theorem iscfilu
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrnust 22871 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
2 unieq 4815 . . . . . . . . 9 (𝑢 = 𝑈 𝑢 = 𝑈)
32dmeqd 5744 . . . . . . . 8 (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈)
43fveq2d 6659 . . . . . . 7 (𝑢 = 𝑈 → (fBas‘dom 𝑢) = (fBas‘dom 𝑈))
5 raleq 3359 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣))
64, 5rabeqbidv 3434 . . . . . 6 (𝑢 = 𝑈 → {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
7 df-cfilu 22934 . . . . . 6 CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
8 fvex 6668 . . . . . . 7 (fBas‘dom 𝑈) ∈ V
98rabex 5203 . . . . . 6 {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ∈ V
106, 7, 9fvmpt 6755 . . . . 5 (𝑈 ran UnifOn → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
111, 10syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
1211eleq2d 2875 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ 𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣}))
13 rexeq 3360 . . . . 5 (𝑓 = 𝐹 → (∃𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1413ralbidv 3162 . . . 4 (𝑓 = 𝐹 → (∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1514elrab 3630 . . 3 (𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1612, 15syl6bb 290 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
17 ustbas2 22872 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
1817fveq2d 6659 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (fBas‘𝑋) = (fBas‘dom 𝑈))
1918eleq2d 2875 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ 𝐹 ∈ (fBas‘dom 𝑈)))
2019anbi1d 632 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
2116, 20bitr4d 285 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {crab 3110   ⊆ wss 3883  ∪ cuni 4804   × cxp 5521  dom cdm 5523  ran crn 5524  ‘cfv 6332  fBascfbas 20100  UnifOncust 22846  CauFiluccfilu 22933 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-iota 6291  df-fun 6334  df-fn 6335  df-fv 6340  df-ust 22847  df-cfilu 22934 This theorem is referenced by:  cfilufbas  22936  cfiluexsm  22937  fmucnd  22939  cfilufg  22940  trcfilu  22941  cfiluweak  22942  neipcfilu  22943  cfilucfil  23207
 Copyright terms: Public domain W3C validator