MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfilu Structured version   Visualization version   GIF version

Theorem iscfilu 24318
Description: The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
iscfilu (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Distinct variable groups:   𝑣,𝑎,𝐹   𝑣,𝑈
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑣,𝑎)

Proof of Theorem iscfilu
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6952 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
2 unieq 4942 . . . . . . . . 9 (𝑢 = 𝑈 𝑢 = 𝑈)
32dmeqd 5930 . . . . . . . 8 (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈)
43fveq2d 6924 . . . . . . 7 (𝑢 = 𝑈 → (fBas‘dom 𝑢) = (fBas‘dom 𝑈))
5 raleq 3331 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣))
64, 5rabeqbidv 3462 . . . . . 6 (𝑢 = 𝑈 → {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
7 df-cfilu 24317 . . . . . 6 CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
8 fvex 6933 . . . . . . 7 (fBas‘dom 𝑈) ∈ V
98rabex 5357 . . . . . 6 {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ∈ V
106, 7, 9fvmpt 7029 . . . . 5 (𝑈 ran UnifOn → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
111, 10syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
1211eleq2d 2830 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ 𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣}))
13 rexeq 3330 . . . . 5 (𝑓 = 𝐹 → (∃𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1413ralbidv 3184 . . . 4 (𝑓 = 𝐹 → (∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1514elrab 3708 . . 3 (𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1612, 15bitrdi 287 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
17 ustbas2 24255 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
1817fveq2d 6924 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (fBas‘𝑋) = (fBas‘dom 𝑈))
1918eleq2d 2830 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ 𝐹 ∈ (fBas‘dom 𝑈)))
2019anbi1d 630 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
2116, 20bitr4d 282 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976   cuni 4931   × cxp 5698  dom cdm 5700  ran crn 5701  cfv 6573  fBascfbas 21375  UnifOncust 24229  CauFiluccfilu 24316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ust 24230  df-cfilu 24317
This theorem is referenced by:  cfilufbas  24319  cfiluexsm  24320  fmucnd  24322  cfilufg  24323  trcfilu  24324  cfiluweak  24325  neipcfilu  24326  cfilucfil  24593
  Copyright terms: Public domain W3C validator