MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfilu Structured version   Visualization version   GIF version

Theorem iscfilu 22880
Description: The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
iscfilu (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Distinct variable groups:   𝑣,𝑎,𝐹   𝑣,𝑈
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑣,𝑎)

Proof of Theorem iscfilu
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrnust 22816 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
2 unieq 4835 . . . . . . . . 9 (𝑢 = 𝑈 𝑢 = 𝑈)
32dmeqd 5760 . . . . . . . 8 (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈)
43fveq2d 6660 . . . . . . 7 (𝑢 = 𝑈 → (fBas‘dom 𝑢) = (fBas‘dom 𝑈))
5 raleq 3405 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣))
64, 5rabeqbidv 3477 . . . . . 6 (𝑢 = 𝑈 → {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
7 df-cfilu 22879 . . . . . 6 CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
8 fvex 6669 . . . . . . 7 (fBas‘dom 𝑈) ∈ V
98rabex 5221 . . . . . 6 {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ∈ V
106, 7, 9fvmpt 6754 . . . . 5 (𝑈 ran UnifOn → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
111, 10syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
1211eleq2d 2898 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ 𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣}))
13 rexeq 3406 . . . . 5 (𝑓 = 𝐹 → (∃𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1413ralbidv 3197 . . . 4 (𝑓 = 𝐹 → (∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1514elrab 3671 . . 3 (𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1612, 15syl6bb 289 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
17 ustbas2 22817 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
1817fveq2d 6660 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (fBas‘𝑋) = (fBas‘dom 𝑈))
1918eleq2d 2898 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ 𝐹 ∈ (fBas‘dom 𝑈)))
2019anbi1d 631 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
2116, 20bitr4d 284 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  wss 3924   cuni 4824   × cxp 5539  dom cdm 5541  ran crn 5542  cfv 6341  fBascfbas 20516  UnifOncust 22791  CauFiluccfilu 22878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-iota 6300  df-fun 6343  df-fn 6344  df-fv 6349  df-ust 22792  df-cfilu 22879
This theorem is referenced by:  cfilufbas  22881  cfiluexsm  22882  fmucnd  22884  cfilufg  22885  trcfilu  22886  cfiluweak  22887  neipcfilu  22888  cfilucfil  23152
  Copyright terms: Public domain W3C validator