MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfilu Structured version   Visualization version   GIF version

Theorem iscfilu 24175
Description: The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
iscfilu (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Distinct variable groups:   𝑣,𝑎,𝐹   𝑣,𝑈
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑣,𝑎)

Proof of Theorem iscfilu
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6890 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
2 unieq 4882 . . . . . . . . 9 (𝑢 = 𝑈 𝑢 = 𝑈)
32dmeqd 5869 . . . . . . . 8 (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈)
43fveq2d 6862 . . . . . . 7 (𝑢 = 𝑈 → (fBas‘dom 𝑢) = (fBas‘dom 𝑈))
5 raleq 3296 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣))
64, 5rabeqbidv 3424 . . . . . 6 (𝑢 = 𝑈 → {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
7 df-cfilu 24174 . . . . . 6 CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
8 fvex 6871 . . . . . . 7 (fBas‘dom 𝑈) ∈ V
98rabex 5294 . . . . . 6 {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ∈ V
106, 7, 9fvmpt 6968 . . . . 5 (𝑈 ran UnifOn → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
111, 10syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
1211eleq2d 2814 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ 𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣}))
13 rexeq 3295 . . . . 5 (𝑓 = 𝐹 → (∃𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1413ralbidv 3156 . . . 4 (𝑓 = 𝐹 → (∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1514elrab 3659 . . 3 (𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1612, 15bitrdi 287 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
17 ustbas2 24113 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
1817fveq2d 6862 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (fBas‘𝑋) = (fBas‘dom 𝑈))
1918eleq2d 2814 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ 𝐹 ∈ (fBas‘dom 𝑈)))
2019anbi1d 631 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
2116, 20bitr4d 282 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914   cuni 4871   × cxp 5636  dom cdm 5638  ran crn 5639  cfv 6511  fBascfbas 21252  UnifOncust 24087  CauFiluccfilu 24173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ust 24088  df-cfilu 24174
This theorem is referenced by:  cfilufbas  24176  cfiluexsm  24177  fmucnd  24179  cfilufg  24180  trcfilu  24181  cfiluweak  24182  neipcfilu  24183  cfilucfil  24447
  Copyright terms: Public domain W3C validator