Step | Hyp | Ref
| Expression |
1 | | elfvunirn 6922 |
. . . . 5
β’ (π β (UnifOnβπ) β π β βͺ ran
UnifOn) |
2 | | unieq 4918 |
. . . . . . . . 9
β’ (π’ = π β βͺ π’ = βͺ
π) |
3 | 2 | dmeqd 5904 |
. . . . . . . 8
β’ (π’ = π β dom βͺ
π’ = dom βͺ π) |
4 | 3 | fveq2d 6894 |
. . . . . . 7
β’ (π’ = π β (fBasβdom βͺ π’) =
(fBasβdom βͺ π)) |
5 | | raleq 3320 |
. . . . . . 7
β’ (π’ = π β (βπ£ β π’ βπ β π (π Γ π) β π£ β βπ£ β π βπ β π (π Γ π) β π£)) |
6 | 4, 5 | rabeqbidv 3447 |
. . . . . 6
β’ (π’ = π β {π β (fBasβdom βͺ π’)
β£ βπ£ β
π’ βπ β π (π Γ π) β π£} = {π β (fBasβdom βͺ π)
β£ βπ£ β
π βπ β π (π Γ π) β π£}) |
7 | | df-cfilu 24012 |
. . . . . 6
β’
CauFilu = (π’ β βͺ ran
UnifOn β¦ {π β
(fBasβdom βͺ π’) β£ βπ£ β π’ βπ β π (π Γ π) β π£}) |
8 | | fvex 6903 |
. . . . . . 7
β’
(fBasβdom βͺ π) β V |
9 | 8 | rabex 5331 |
. . . . . 6
β’ {π β (fBasβdom βͺ π)
β£ βπ£ β
π βπ β π (π Γ π) β π£} β V |
10 | 6, 7, 9 | fvmpt 6997 |
. . . . 5
β’ (π β βͺ ran UnifOn β (CauFiluβπ) = {π β (fBasβdom βͺ π)
β£ βπ£ β
π βπ β π (π Γ π) β π£}) |
11 | 1, 10 | syl 17 |
. . . 4
β’ (π β (UnifOnβπ) β
(CauFiluβπ) = {π β (fBasβdom βͺ π)
β£ βπ£ β
π βπ β π (π Γ π) β π£}) |
12 | 11 | eleq2d 2817 |
. . 3
β’ (π β (UnifOnβπ) β (πΉ β (CauFiluβπ) β πΉ β {π β (fBasβdom βͺ π)
β£ βπ£ β
π βπ β π (π Γ π) β π£})) |
13 | | rexeq 3319 |
. . . . 5
β’ (π = πΉ β (βπ β π (π Γ π) β π£ β βπ β πΉ (π Γ π) β π£)) |
14 | 13 | ralbidv 3175 |
. . . 4
β’ (π = πΉ β (βπ£ β π βπ β π (π Γ π) β π£ β βπ£ β π βπ β πΉ (π Γ π) β π£)) |
15 | 14 | elrab 3682 |
. . 3
β’ (πΉ β {π β (fBasβdom βͺ π)
β£ βπ£ β
π βπ β π (π Γ π) β π£} β (πΉ β (fBasβdom βͺ π)
β§ βπ£ β
π βπ β πΉ (π Γ π) β π£)) |
16 | 12, 15 | bitrdi 286 |
. 2
β’ (π β (UnifOnβπ) β (πΉ β (CauFiluβπ) β (πΉ β (fBasβdom βͺ π)
β§ βπ£ β
π βπ β πΉ (π Γ π) β π£))) |
17 | | ustbas2 23950 |
. . . . 5
β’ (π β (UnifOnβπ) β π = dom βͺ π) |
18 | 17 | fveq2d 6894 |
. . . 4
β’ (π β (UnifOnβπ) β (fBasβπ) = (fBasβdom βͺ π)) |
19 | 18 | eleq2d 2817 |
. . 3
β’ (π β (UnifOnβπ) β (πΉ β (fBasβπ) β πΉ β (fBasβdom βͺ π))) |
20 | 19 | anbi1d 628 |
. 2
β’ (π β (UnifOnβπ) β ((πΉ β (fBasβπ) β§ βπ£ β π βπ β πΉ (π Γ π) β π£) β (πΉ β (fBasβdom βͺ π)
β§ βπ£ β
π βπ β πΉ (π Γ π) β π£))) |
21 | 16, 20 | bitr4d 281 |
1
β’ (π β (UnifOnβπ) β (πΉ β (CauFiluβπ) β (πΉ β (fBasβπ) β§ βπ£ β π βπ β πΉ (π Γ π) β π£))) |