| Metamath
Proof Explorer Theorem List (p. 241 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | oppgtgp 24001 | The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp) | ||
| Theorem | distgp 24002 | Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) | ||
| Theorem | indistgp 24003 | Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) | ||
| Theorem | efmndtmd 24004 | The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 24009. (Contributed by AV, 23-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd) | ||
| Theorem | tmdlactcn 24005* | The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | tgplacthmeo 24006* | The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽Homeo𝐽)) | ||
| Theorem | submtmd 24007 | A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd) | ||
| Theorem | subgtgp 24008 | A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
| Theorem | symgtgp 24009 | The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp) | ||
| Theorem | subgntr 24010 | A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 24012, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐽) | ||
| Theorem | opnsubg 24011 | An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| Theorem | clssubg 24012 | The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) | ||
| Theorem | clsnsg 24013 | The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) | ||
| Theorem | cldsubg 24014 | A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) | ||
| Theorem | tgpconncompeqg 24015* | The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | ||
| Theorem | tgpconncomp 24016* | The identity component, the connected component containing the identity element, is a closed (conncompcld 23337) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺)) | ||
| Theorem | tgpconncompss 24017* | The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) | ||
| Theorem | ghmcnp 24018 | A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
| Theorem | snclseqg 24019 | The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑆 = ((cls‘𝐽)‘{ 0 }) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘{𝐴})) | ||
| Theorem | tgphaus 24020 | A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽))) | ||
| Theorem | tgpt1 24021 | Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
| Theorem | tgpt0 24022 | Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
| Theorem | qustgpopn 24023* | A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ 𝐾) | ||
| Theorem | qustgplem 24024* | Lemma for qustgp 24025. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) & ⊢ − = (𝑧 ∈ 𝑋, 𝑤 ∈ 𝑋 ↦ [(𝑧(-g‘𝐺)𝑤)](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
| Theorem | qustgp 24025 | The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
| Theorem | qustgphaus 24026 | The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) | ||
| Theorem | prdstmdd 24027 | The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopMnd) | ||
| Theorem | prdstgpd 24028 | The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopGrp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopGrp) | ||
| Syntax | ctsu 24029 | Extend class notation to include infinite group sums in a topological group. |
| class tsums | ||
| Definition | df-tsms 24030* | Define the set of limit points of an infinite group sum for the topological group 𝐺. If 𝐺 is Hausdorff, then there will be at most one element in this set and ∪ (𝑊 tsums 𝐹) selects this unique element if it exists. (𝑊 tsums 𝐹) ≈ 1o is a way to say that the sum exists and is unique. Note that unlike Σ (df-sum 15612) and Σg (df-gsum 17364), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) | ||
| Theorem | tsmsfbas 24031* | The collection of all sets of the form 𝐹(𝑧) = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ 𝐿 = ran 𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐿 ∈ (fBas‘𝑆)) | ||
| Theorem | tsmslem1 24032 | The finite partial sums of a function 𝐹 are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) | ||
| Theorem | tsmsval2 24033* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
| Theorem | tsmsval 24034* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
| Theorem | tsmspropd 24035 | The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18651 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) | ||
| Theorem | eltsms 24036* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) | ||
| Theorem | tsmsi 24037* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | ||
| Theorem | tsmscl 24038 | A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) | ||
| Theorem | haustsms 24039* | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | haustsms2 24040 | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) | ||
| Theorem | tsmscls 24041 | One half of tgptsmscls 24053, true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) | ||
| Theorem | tsmsgsum 24042 | The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})) | ||
| Theorem | tsmsid 24043 | If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | haustsmsid 24044 | In a Hausdorff topological group, a finite sum sums to exactly the usual number with no extraneous limit points. By setting the topology to the discrete topology (which is Hausdorff), this theorem can be used to turn any tsums theorem into a Σg theorem, so that the infinite group sum operation can be viewed as a generalization of the finite group sum. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {(𝐺 Σg 𝐹)}) | ||
| Theorem | tsms0 24045* | The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) | ||
| Theorem | tsmssubm 24046 | Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆)) | ||
| Theorem | tsmsres 24047 | Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐺 tsums (𝐹 ↾ 𝑊)) = (𝐺 tsums 𝐹)) | ||
| Theorem | tsmsf1o 24048 | Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹 ∘ 𝐻))) | ||
| Theorem | tsmsmhm 24049 | Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐻 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ TopSp) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐶‘𝑋) ∈ (𝐻 tsums (𝐶 ∘ 𝐹))) | ||
| Theorem | tsmsadd 24050 | The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹 ∘f + 𝐻))) | ||
| Theorem | tsmsinv 24051 | Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝐺 tsums (𝐼 ∘ 𝐹))) | ||
| Theorem | tsmssub 24052 | The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) | ||
| Theorem | tgptsmscls 24053 | A sum in a topological group is uniquely determined up to a coset of cls({0}), which is a normal subgroup by clsnsg 24013, 0nsg 19066. (Contributed by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋})) | ||
| Theorem | tgptsmscld 24054 | The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) | ||
| Theorem | tsmssplit 24055 | Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums (𝐹 ↾ 𝐶))) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums (𝐹 ↾ 𝐷))) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | tsmsxplem1 24056* | Lemma for tsmsxp 24058. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → dom 𝐷 ⊆ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) | ||
| Theorem | tsmsxplem2 24057* | Lemma for tsmsxp 24058. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) & ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝐶 ∩ Fin)) & ⊢ (𝜑 → 𝐷 ⊆ (𝐾 × 𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿) & ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑔 ∈ (𝐿 ↑m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝑈) | ||
| Theorem | tsmsxp 24058* | Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19873 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 24056 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻)) | ||
| Syntax | ctrg 24059 | The class of all topological division rings. |
| class TopRing | ||
| Syntax | ctdrg 24060 | The class of all topological division rings. |
| class TopDRing | ||
| Syntax | ctlm 24061 | The class of all topological modules. |
| class TopMod | ||
| Syntax | ctvc 24062 | The class of all topological vector spaces. |
| class TopVec | ||
| Definition | df-trg 24063 | Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd} | ||
| Definition | df-tdrg 24064 | Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | ||
| Definition | df-tlm 24065 | Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))} | ||
| Definition | df-tvc 24066 | Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | ||
| Theorem | istrg 24067 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) | ||
| Theorem | trgtmd 24068 | The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) | ||
| Theorem | istdrg 24069 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | ||
| Theorem | tdrgunit 24070 | The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) | ||
| Theorem | trgtgp 24071 | A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | ||
| Theorem | trgtmd2 24072 | A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) | ||
| Theorem | trgtps 24073 | A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) | ||
| Theorem | trgring 24074 | A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) | ||
| Theorem | trggrp 24075 | A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Grp) | ||
| Theorem | tdrgtrg 24076 | A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | ||
| Theorem | tdrgdrng 24077 | A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) | ||
| Theorem | tdrgring 24078 | A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) | ||
| Theorem | tdrgtmd 24079 | A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd) | ||
| Theorem | tdrgtps 24080 | A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) | ||
| Theorem | istdrg2 24081 | A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | ||
| Theorem | mulrcn 24082 | The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑇 = (+𝑓‘(mulGrp‘𝑅)) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑇 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | invrcn2 24083 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) | ||
| Theorem | invrcn 24084 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) | ||
| Theorem | cnmpt1mulr 24085* | Continuity of ring multiplication; analogue of cnmpt12f 23569 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
| Theorem | cnmpt2mulr 24086* | Continuity of ring multiplication; analogue of cnmpt22f 23578 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
| Theorem | dvrcn 24087 | The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | ||
| Theorem | istlm 24088 | The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) | ||
| Theorem | vscacn 24089 | The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | tlmtmd 24090 | A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) | ||
| Theorem | tlmtps 24091 | A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | ||
| Theorem | tlmlmod 24092 | A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) | ||
| Theorem | tlmtrg 24093 | The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) | ||
| Theorem | tlmscatps 24094 | The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) | ||
| Theorem | istvc 24095 | A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) | ||
| Theorem | tvctdrg 24096 | The scalar field of a topological vector space is a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing) | ||
| Theorem | cnmpt1vsca 24097* | Continuity of scalar multiplication; analogue of cnmpt12f 23569 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) | ||
| Theorem | cnmpt2vsca 24098* | Continuity of scalar multiplication; analogue of cnmpt22f 23578 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) | ||
| Theorem | tlmtgp 24099 | A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp) | ||
| Theorem | tvctlm 24100 | A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ TopMod) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |