| Metamath
Proof Explorer Theorem List (p. 241 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tgpconncompss 24001* | The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) | ||
| Theorem | ghmcnp 24002 | A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
| Theorem | snclseqg 24003 | The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑆 = ((cls‘𝐽)‘{ 0 }) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘{𝐴})) | ||
| Theorem | tgphaus 24004 | A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽))) | ||
| Theorem | tgpt1 24005 | Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
| Theorem | tgpt0 24006 | Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
| Theorem | qustgpopn 24007* | A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ 𝐾) | ||
| Theorem | qustgplem 24008* | Lemma for qustgp 24009. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) & ⊢ − = (𝑧 ∈ 𝑋, 𝑤 ∈ 𝑋 ↦ [(𝑧(-g‘𝐺)𝑤)](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
| Theorem | qustgp 24009 | The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
| Theorem | qustgphaus 24010 | The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) | ||
| Theorem | prdstmdd 24011 | The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopMnd) | ||
| Theorem | prdstgpd 24012 | The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopGrp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopGrp) | ||
| Syntax | ctsu 24013 | Extend class notation to include infinite group sums in a topological group. |
| class tsums | ||
| Definition | df-tsms 24014* | Define the set of limit points of an infinite group sum for the topological group 𝐺. If 𝐺 is Hausdorff, then there will be at most one element in this set and ∪ (𝑊 tsums 𝐹) selects this unique element if it exists. (𝑊 tsums 𝐹) ≈ 1o is a way to say that the sum exists and is unique. Note that unlike Σ (df-sum 15653) and Σg (df-gsum 17405), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) | ||
| Theorem | tsmsfbas 24015* | The collection of all sets of the form 𝐹(𝑧) = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ 𝐿 = ran 𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐿 ∈ (fBas‘𝑆)) | ||
| Theorem | tsmslem1 24016 | The finite partial sums of a function 𝐹 are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) | ||
| Theorem | tsmsval2 24017* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
| Theorem | tsmsval 24018* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
| Theorem | tsmspropd 24019 | The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18686 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) | ||
| Theorem | eltsms 24020* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) | ||
| Theorem | tsmsi 24021* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | ||
| Theorem | tsmscl 24022 | A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) | ||
| Theorem | haustsms 24023* | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | haustsms2 24024 | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) | ||
| Theorem | tsmscls 24025 | One half of tgptsmscls 24037, true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) | ||
| Theorem | tsmsgsum 24026 | The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})) | ||
| Theorem | tsmsid 24027 | If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | haustsmsid 24028 | In a Hausdorff topological group, a finite sum sums to exactly the usual number with no extraneous limit points. By setting the topology to the discrete topology (which is Hausdorff), this theorem can be used to turn any tsums theorem into a Σg theorem, so that the infinite group sum operation can be viewed as a generalization of the finite group sum. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {(𝐺 Σg 𝐹)}) | ||
| Theorem | tsms0 24029* | The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) | ||
| Theorem | tsmssubm 24030 | Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆)) | ||
| Theorem | tsmsres 24031 | Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐺 tsums (𝐹 ↾ 𝑊)) = (𝐺 tsums 𝐹)) | ||
| Theorem | tsmsf1o 24032 | Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹 ∘ 𝐻))) | ||
| Theorem | tsmsmhm 24033 | Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐻 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ TopSp) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐶‘𝑋) ∈ (𝐻 tsums (𝐶 ∘ 𝐹))) | ||
| Theorem | tsmsadd 24034 | The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹 ∘f + 𝐻))) | ||
| Theorem | tsmsinv 24035 | Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝐺 tsums (𝐼 ∘ 𝐹))) | ||
| Theorem | tsmssub 24036 | The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) | ||
| Theorem | tgptsmscls 24037 | A sum in a topological group is uniquely determined up to a coset of cls({0}), which is a normal subgroup by clsnsg 23997, 0nsg 19101. (Contributed by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋})) | ||
| Theorem | tgptsmscld 24038 | The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) | ||
| Theorem | tsmssplit 24039 | Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums (𝐹 ↾ 𝐶))) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums (𝐹 ↾ 𝐷))) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | tsmsxplem1 24040* | Lemma for tsmsxp 24042. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → dom 𝐷 ⊆ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) | ||
| Theorem | tsmsxplem2 24041* | Lemma for tsmsxp 24042. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) & ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝐶 ∩ Fin)) & ⊢ (𝜑 → 𝐷 ⊆ (𝐾 × 𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿) & ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑔 ∈ (𝐿 ↑m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝑈) | ||
| Theorem | tsmsxp 24042* | Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19906 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 24040 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻)) | ||
| Syntax | ctrg 24043 | The class of all topological division rings. |
| class TopRing | ||
| Syntax | ctdrg 24044 | The class of all topological division rings. |
| class TopDRing | ||
| Syntax | ctlm 24045 | The class of all topological modules. |
| class TopMod | ||
| Syntax | ctvc 24046 | The class of all topological vector spaces. |
| class TopVec | ||
| Definition | df-trg 24047 | Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd} | ||
| Definition | df-tdrg 24048 | Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | ||
| Definition | df-tlm 24049 | Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))} | ||
| Definition | df-tvc 24050 | Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | ||
| Theorem | istrg 24051 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) | ||
| Theorem | trgtmd 24052 | The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) | ||
| Theorem | istdrg 24053 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | ||
| Theorem | tdrgunit 24054 | The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) | ||
| Theorem | trgtgp 24055 | A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | ||
| Theorem | trgtmd2 24056 | A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) | ||
| Theorem | trgtps 24057 | A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) | ||
| Theorem | trgring 24058 | A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) | ||
| Theorem | trggrp 24059 | A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Grp) | ||
| Theorem | tdrgtrg 24060 | A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | ||
| Theorem | tdrgdrng 24061 | A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) | ||
| Theorem | tdrgring 24062 | A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) | ||
| Theorem | tdrgtmd 24063 | A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd) | ||
| Theorem | tdrgtps 24064 | A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) | ||
| Theorem | istdrg2 24065 | A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | ||
| Theorem | mulrcn 24066 | The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑇 = (+𝑓‘(mulGrp‘𝑅)) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑇 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | invrcn2 24067 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) | ||
| Theorem | invrcn 24068 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) | ||
| Theorem | cnmpt1mulr 24069* | Continuity of ring multiplication; analogue of cnmpt12f 23553 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
| Theorem | cnmpt2mulr 24070* | Continuity of ring multiplication; analogue of cnmpt22f 23562 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
| Theorem | dvrcn 24071 | The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | ||
| Theorem | istlm 24072 | The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) | ||
| Theorem | vscacn 24073 | The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | tlmtmd 24074 | A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) | ||
| Theorem | tlmtps 24075 | A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | ||
| Theorem | tlmlmod 24076 | A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) | ||
| Theorem | tlmtrg 24077 | The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) | ||
| Theorem | tlmscatps 24078 | The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) | ||
| Theorem | istvc 24079 | A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) | ||
| Theorem | tvctdrg 24080 | The scalar field of a topological vector space is a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing) | ||
| Theorem | cnmpt1vsca 24081* | Continuity of scalar multiplication; analogue of cnmpt12f 23553 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) | ||
| Theorem | cnmpt2vsca 24082* | Continuity of scalar multiplication; analogue of cnmpt22f 23562 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) | ||
| Theorem | tlmtgp 24083 | A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp) | ||
| Theorem | tvctlm 24084 | A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ TopMod) | ||
| Theorem | tvclmod 24085 | A topological vector space is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LMod) | ||
| Theorem | tvclvec 24086 | A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) | ||
| Syntax | cust 24087 | Extend class notation with the class function of uniform structures. |
| class UnifOn | ||
| Definition | df-ust 24088* | Definition of a uniform structure. Definition 1 of [BourbakiTop1] p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn. Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014.) (Revised by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | ||
| Theorem | ustfn 24089 | The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ UnifOn Fn V | ||
| Theorem | ustval 24090* | The class of all uniform structures for a base 𝑋. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | ||
| Theorem | isust 24091* | The predicate "𝑈 is a uniform structure with base 𝑋". (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | ||
| Theorem | ustssxp 24092 | Entourages are subsets of the Cartesian product of the base set. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | ||
| Theorem | ustssel 24093 | A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈)) | ||
| Theorem | ustbasel 24094 | The full set is always an entourage. Condition FIIb of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | ||
| Theorem | ustincl 24095 | A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈) → (𝑉 ∩ 𝑊) ∈ 𝑈) | ||
| Theorem | ustdiag 24096 | The diagonal set is included in any entourage, i.e. any point is 𝑉 -close to itself. Condition UI of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | ||
| Theorem | ustinvel 24097 | If 𝑉 is an entourage, so is its inverse. Condition UII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ◡𝑉 ∈ 𝑈) | ||
| Theorem | ustexhalf 24098* | For each entourage 𝑉 there is an entourage 𝑤 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉) | ||
| Theorem | ustrel 24099 | The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | ||
| Theorem | ustfilxp 24100 | A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |