Step | Hyp | Ref
| Expression |
1 | | ccgr3 35008 |
. 2
class
Cgr3 |
2 | | vp |
. . . . . . . . . . . . 13
setvar 𝑝 |
3 | 2 | cv 1541 |
. . . . . . . . . . . 12
class 𝑝 |
4 | | va |
. . . . . . . . . . . . . 14
setvar 𝑎 |
5 | 4 | cv 1541 |
. . . . . . . . . . . . 13
class 𝑎 |
6 | | vb |
. . . . . . . . . . . . . . 15
setvar 𝑏 |
7 | 6 | cv 1541 |
. . . . . . . . . . . . . 14
class 𝑏 |
8 | | vc |
. . . . . . . . . . . . . . 15
setvar 𝑐 |
9 | 8 | cv 1541 |
. . . . . . . . . . . . . 14
class 𝑐 |
10 | 7, 9 | cop 4635 |
. . . . . . . . . . . . 13
class
⟨𝑏, 𝑐⟩ |
11 | 5, 10 | cop 4635 |
. . . . . . . . . . . 12
class
⟨𝑎, ⟨𝑏, 𝑐⟩⟩ |
12 | 3, 11 | wceq 1542 |
. . . . . . . . . . 11
wff 𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ |
13 | | vq |
. . . . . . . . . . . . 13
setvar 𝑞 |
14 | 13 | cv 1541 |
. . . . . . . . . . . 12
class 𝑞 |
15 | | vd |
. . . . . . . . . . . . . 14
setvar 𝑑 |
16 | 15 | cv 1541 |
. . . . . . . . . . . . 13
class 𝑑 |
17 | | ve |
. . . . . . . . . . . . . . 15
setvar 𝑒 |
18 | 17 | cv 1541 |
. . . . . . . . . . . . . 14
class 𝑒 |
19 | | vf |
. . . . . . . . . . . . . . 15
setvar 𝑓 |
20 | 19 | cv 1541 |
. . . . . . . . . . . . . 14
class 𝑓 |
21 | 18, 20 | cop 4635 |
. . . . . . . . . . . . 13
class
⟨𝑒, 𝑓⟩ |
22 | 16, 21 | cop 4635 |
. . . . . . . . . . . 12
class
⟨𝑑, ⟨𝑒, 𝑓⟩⟩ |
23 | 14, 22 | wceq 1542 |
. . . . . . . . . . 11
wff 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ |
24 | 5, 7 | cop 4635 |
. . . . . . . . . . . . 13
class
⟨𝑎, 𝑏⟩ |
25 | 16, 18 | cop 4635 |
. . . . . . . . . . . . 13
class
⟨𝑑, 𝑒⟩ |
26 | | ccgr 28148 |
. . . . . . . . . . . . 13
class
Cgr |
27 | 24, 25, 26 | wbr 5149 |
. . . . . . . . . . . 12
wff ⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ |
28 | 5, 9 | cop 4635 |
. . . . . . . . . . . . 13
class
⟨𝑎, 𝑐⟩ |
29 | 16, 20 | cop 4635 |
. . . . . . . . . . . . 13
class
⟨𝑑, 𝑓⟩ |
30 | 28, 29, 26 | wbr 5149 |
. . . . . . . . . . . 12
wff ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ |
31 | 10, 21, 26 | wbr 5149 |
. . . . . . . . . . . 12
wff ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ |
32 | 27, 30, 31 | w3a 1088 |
. . . . . . . . . . 11
wff
(⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) |
33 | 12, 23, 32 | w3a 1088 |
. . . . . . . . . 10
wff (𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
34 | | vn |
. . . . . . . . . . . 12
setvar 𝑛 |
35 | 34 | cv 1541 |
. . . . . . . . . . 11
class 𝑛 |
36 | | cee 28146 |
. . . . . . . . . . 11
class
𝔼 |
37 | 35, 36 | cfv 6544 |
. . . . . . . . . 10
class
(𝔼‘𝑛) |
38 | 33, 19, 37 | wrex 3071 |
. . . . . . . . 9
wff
∃𝑓 ∈
(𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
39 | 38, 17, 37 | wrex 3071 |
. . . . . . . 8
wff
∃𝑒 ∈
(𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
40 | 39, 15, 37 | wrex 3071 |
. . . . . . 7
wff
∃𝑑 ∈
(𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
41 | 40, 8, 37 | wrex 3071 |
. . . . . 6
wff
∃𝑐 ∈
(𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
42 | 41, 6, 37 | wrex 3071 |
. . . . 5
wff
∃𝑏 ∈
(𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
43 | 42, 4, 37 | wrex 3071 |
. . . 4
wff
∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
44 | | cn 12212 |
. . . 4
class
ℕ |
45 | 43, 34, 44 | wrex 3071 |
. . 3
wff
∃𝑛 ∈
ℕ ∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)) |
46 | 45, 2, 13 | copab 5211 |
. 2
class
{⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))} |
47 | 1, 46 | wceq 1542 |
1
wff Cgr3 =
{⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))} |