Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr3 Structured version   Visualization version   GIF version

Theorem brcgr3 35323
Description: Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
brcgr3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))

Proof of Theorem brcgr3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4873 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21breq1d 5158 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩))
3 opeq1 4873 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
43breq1d 5158 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩))
52, 43anbi12d 1436 . 2 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
6 opeq2 4874 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76breq1d 5158 . . 3 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩))
8 opeq1 4873 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq1d 5158 . . 3 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))
107, 93anbi13d 1437 . 2 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
11 opeq2 4874 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1211breq1d 5158 . . 3 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩))
13 opeq2 4874 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1413breq1d 5158 . . 3 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩))
1512, 143anbi23d 1438 . 2 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
16 opeq1 4873 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝑒⟩)
1716breq2d 5160 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩))
18 opeq1 4873 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑓⟩ = ⟨𝐷, 𝑓⟩)
1918breq2d 5160 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
2017, 193anbi12d 1436 . 2 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
21 opeq2 4874 . . . 4 (𝑒 = 𝐸 → ⟨𝐷, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
2221breq2d 5160 . . 3 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩))
23 opeq1 4873 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
2423breq2d 5160 . . 3 (𝑒 = 𝐸 → (⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
2522, 243anbi13d 1437 . 2 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
26 opeq2 4874 . . . 4 (𝑓 = 𝐹 → ⟨𝐷, 𝑓⟩ = ⟨𝐷, 𝐹⟩)
2726breq2d 5160 . . 3 (𝑓 = 𝐹 → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
28 opeq2 4874 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
2928breq2d 5160 . . 3 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
3027, 293anbi23d 1438 . 2 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
31 fveq2 6891 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32 df-cgr3 35318 . 2 Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
335, 10, 15, 20, 25, 30, 31, 32br6 35032 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  cop 4634   class class class wbr 5148  cfv 6543  cn 12217  𝔼cee 28414  Cgrccgr 28416  Cgr3ccgr3 35313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-iota 6495  df-fv 6551  df-cgr3 35318
This theorem is referenced by:  cgr3permute3  35324  cgr3permute1  35325  cgr3tr4  35329  cgr3com  35330  cgr3rflx  35331  cgrxfr  35332  btwnxfr  35333  lineext  35353  brofs2  35354  brifs2  35355  endofsegid  35362  btwnconn1lem4  35367  btwnconn1lem8  35371  btwnconn1lem11  35374  brsegle2  35386  seglecgr12im  35387  segletr  35391
  Copyright terms: Public domain W3C validator