Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr3 Structured version   Visualization version   GIF version

Theorem brcgr3 34348
Description: Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
brcgr3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))

Proof of Theorem brcgr3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4804 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21breq1d 5084 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩))
3 opeq1 4804 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
43breq1d 5084 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩))
52, 43anbi12d 1436 . 2 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
6 opeq2 4805 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76breq1d 5084 . . 3 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩))
8 opeq1 4804 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq1d 5084 . . 3 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))
107, 93anbi13d 1437 . 2 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
11 opeq2 4805 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1211breq1d 5084 . . 3 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩))
13 opeq2 4805 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1413breq1d 5084 . . 3 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩))
1512, 143anbi23d 1438 . 2 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
16 opeq1 4804 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝑒⟩)
1716breq2d 5086 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩))
18 opeq1 4804 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑓⟩ = ⟨𝐷, 𝑓⟩)
1918breq2d 5086 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
2017, 193anbi12d 1436 . 2 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
21 opeq2 4805 . . . 4 (𝑒 = 𝐸 → ⟨𝐷, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
2221breq2d 5086 . . 3 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩))
23 opeq1 4804 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
2423breq2d 5086 . . 3 (𝑒 = 𝐸 → (⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
2522, 243anbi13d 1437 . 2 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
26 opeq2 4805 . . . 4 (𝑓 = 𝐹 → ⟨𝐷, 𝑓⟩ = ⟨𝐷, 𝐹⟩)
2726breq2d 5086 . . 3 (𝑓 = 𝐹 → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
28 opeq2 4805 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
2928breq2d 5086 . . 3 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
3027, 293anbi23d 1438 . 2 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
31 fveq2 6774 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32 df-cgr3 34343 . 2 Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
335, 10, 15, 20, 25, 30, 31, 32br6 33724 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074  cfv 6433  cn 11973  𝔼cee 27256  Cgrccgr 27258  Cgr3ccgr3 34338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441  df-cgr3 34343
This theorem is referenced by:  cgr3permute3  34349  cgr3permute1  34350  cgr3tr4  34354  cgr3com  34355  cgr3rflx  34356  cgrxfr  34357  btwnxfr  34358  lineext  34378  brofs2  34379  brifs2  34380  endofsegid  34387  btwnconn1lem4  34392  btwnconn1lem8  34396  btwnconn1lem11  34399  brsegle2  34411  seglecgr12im  34412  segletr  34416
  Copyright terms: Public domain W3C validator