Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr3 Structured version   Visualization version   GIF version

Theorem brcgr3 33391
Description: Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
brcgr3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))

Proof of Theorem brcgr3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4801 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21breq1d 5072 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩))
3 opeq1 4801 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
43breq1d 5072 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩))
52, 43anbi12d 1430 . 2 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
6 opeq2 4802 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76breq1d 5072 . . 3 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩))
8 opeq1 4801 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq1d 5072 . . 3 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))
107, 93anbi13d 1431 . 2 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
11 opeq2 4802 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1211breq1d 5072 . . 3 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩))
13 opeq2 4802 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1413breq1d 5072 . . 3 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩))
1512, 143anbi23d 1432 . 2 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
16 opeq1 4801 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝑒⟩)
1716breq2d 5074 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩))
18 opeq1 4801 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑓⟩ = ⟨𝐷, 𝑓⟩)
1918breq2d 5074 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
2017, 193anbi12d 1430 . 2 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
21 opeq2 4802 . . . 4 (𝑒 = 𝐸 → ⟨𝐷, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
2221breq2d 5074 . . 3 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩))
23 opeq1 4801 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
2423breq2d 5074 . . 3 (𝑒 = 𝐸 → (⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
2522, 243anbi13d 1431 . 2 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
26 opeq2 4802 . . . 4 (𝑓 = 𝐹 → ⟨𝐷, 𝑓⟩ = ⟨𝐷, 𝐹⟩)
2726breq2d 5074 . . 3 (𝑓 = 𝐹 → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
28 opeq2 4802 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
2928breq2d 5074 . . 3 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
3027, 293anbi23d 1432 . 2 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
31 fveq2 6666 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32 df-cgr3 33386 . 2 Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
335, 10, 15, 20, 25, 30, 31, 32br6 32877 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1081   = wceq 1530  wcel 2107  cop 4569   class class class wbr 5062  cfv 6351  cn 11630  𝔼cee 26588  Cgrccgr 26590  Cgr3ccgr3 33381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-iota 6311  df-fv 6359  df-cgr3 33386
This theorem is referenced by:  cgr3permute3  33392  cgr3permute1  33393  cgr3tr4  33397  cgr3com  33398  cgr3rflx  33399  cgrxfr  33400  btwnxfr  33401  lineext  33421  brofs2  33422  brifs2  33423  endofsegid  33430  btwnconn1lem4  33435  btwnconn1lem8  33439  btwnconn1lem11  33442  brsegle2  33454  seglecgr12im  33455  segletr  33459
  Copyright terms: Public domain W3C validator