Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fs Structured version   Visualization version   GIF version

Definition df-fs 34271
Description: The general five segment configuration is a generalization of the outer and inner five segment configurations. See brfs 34308 and fscgr 34309 for its use. Definition 4.15 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
df-fs FiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧,𝑤,𝑝,𝑞,𝑛

Detailed syntax breakdown of Definition df-fs
StepHypRef Expression
1 cfs 34267 . 2 class FiveSeg
2 vp . . . . . . . . . . . . . . 15 setvar 𝑝
32cv 1538 . . . . . . . . . . . . . 14 class 𝑝
4 va . . . . . . . . . . . . . . . . 17 setvar 𝑎
54cv 1538 . . . . . . . . . . . . . . . 16 class 𝑎
6 vb . . . . . . . . . . . . . . . . 17 setvar 𝑏
76cv 1538 . . . . . . . . . . . . . . . 16 class 𝑏
85, 7cop 4564 . . . . . . . . . . . . . . 15 class 𝑎, 𝑏
9 vc . . . . . . . . . . . . . . . . 17 setvar 𝑐
109cv 1538 . . . . . . . . . . . . . . . 16 class 𝑐
11 vd . . . . . . . . . . . . . . . . 17 setvar 𝑑
1211cv 1538 . . . . . . . . . . . . . . . 16 class 𝑑
1310, 12cop 4564 . . . . . . . . . . . . . . 15 class 𝑐, 𝑑
148, 13cop 4564 . . . . . . . . . . . . . 14 class ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩
153, 14wceq 1539 . . . . . . . . . . . . 13 wff 𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩
16 vq . . . . . . . . . . . . . . 15 setvar 𝑞
1716cv 1538 . . . . . . . . . . . . . 14 class 𝑞
18 vx . . . . . . . . . . . . . . . . 17 setvar 𝑥
1918cv 1538 . . . . . . . . . . . . . . . 16 class 𝑥
20 vy . . . . . . . . . . . . . . . . 17 setvar 𝑦
2120cv 1538 . . . . . . . . . . . . . . . 16 class 𝑦
2219, 21cop 4564 . . . . . . . . . . . . . . 15 class 𝑥, 𝑦
23 vz . . . . . . . . . . . . . . . . 17 setvar 𝑧
2423cv 1538 . . . . . . . . . . . . . . . 16 class 𝑧
25 vw . . . . . . . . . . . . . . . . 17 setvar 𝑤
2625cv 1538 . . . . . . . . . . . . . . . 16 class 𝑤
2724, 26cop 4564 . . . . . . . . . . . . . . 15 class 𝑧, 𝑤
2822, 27cop 4564 . . . . . . . . . . . . . 14 class ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩
2917, 28wceq 1539 . . . . . . . . . . . . 13 wff 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩
307, 10cop 4564 . . . . . . . . . . . . . . 15 class 𝑏, 𝑐
31 ccolin 34266 . . . . . . . . . . . . . . 15 class Colinear
325, 30, 31wbr 5070 . . . . . . . . . . . . . 14 wff 𝑎 Colinear ⟨𝑏, 𝑐
335, 30cop 4564 . . . . . . . . . . . . . . 15 class 𝑎, ⟨𝑏, 𝑐⟩⟩
3421, 24cop 4564 . . . . . . . . . . . . . . . 16 class 𝑦, 𝑧
3519, 34cop 4564 . . . . . . . . . . . . . . 15 class 𝑥, ⟨𝑦, 𝑧⟩⟩
36 ccgr3 34265 . . . . . . . . . . . . . . 15 class Cgr3
3733, 35, 36wbr 5070 . . . . . . . . . . . . . 14 wff 𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩
385, 12cop 4564 . . . . . . . . . . . . . . . 16 class 𝑎, 𝑑
3919, 26cop 4564 . . . . . . . . . . . . . . . 16 class 𝑥, 𝑤
40 ccgr 27161 . . . . . . . . . . . . . . . 16 class Cgr
4138, 39, 40wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤
427, 12cop 4564 . . . . . . . . . . . . . . . 16 class 𝑏, 𝑑
4321, 26cop 4564 . . . . . . . . . . . . . . . 16 class 𝑦, 𝑤
4442, 43, 40wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤
4541, 44wa 395 . . . . . . . . . . . . . 14 wff (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)
4632, 37, 45w3a 1085 . . . . . . . . . . . . 13 wff (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩))
4715, 29, 46w3a 1085 . . . . . . . . . . . 12 wff (𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
48 vn . . . . . . . . . . . . . 14 setvar 𝑛
4948cv 1538 . . . . . . . . . . . . 13 class 𝑛
50 cee 27159 . . . . . . . . . . . . 13 class 𝔼
5149, 50cfv 6418 . . . . . . . . . . . 12 class (𝔼‘𝑛)
5247, 25, 51wrex 3064 . . . . . . . . . . 11 wff 𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5352, 23, 51wrex 3064 . . . . . . . . . 10 wff 𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5453, 20, 51wrex 3064 . . . . . . . . 9 wff 𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5554, 18, 51wrex 3064 . . . . . . . 8 wff 𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5655, 11, 51wrex 3064 . . . . . . 7 wff 𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5756, 9, 51wrex 3064 . . . . . 6 wff 𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5857, 6, 51wrex 3064 . . . . 5 wff 𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5958, 4, 51wrex 3064 . . . 4 wff 𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
60 cn 11903 . . . 4 class
6159, 48, 60wrex 3064 . . 3 wff 𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
6261, 2, 16copab 5132 . 2 class {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
631, 62wceq 1539 1 wff FiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
Colors of variables: wff setvar class
This definition is referenced by:  brfs  34308
  Copyright terms: Public domain W3C validator