Detailed syntax breakdown of Definition df-fs
Step | Hyp | Ref
| Expression |
1 | | cfs 34340 |
. 2
class
FiveSeg |
2 | | vp |
. . . . . . . . . . . . . . 15
setvar 𝑝 |
3 | 2 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑝 |
4 | | va |
. . . . . . . . . . . . . . . . 17
setvar 𝑎 |
5 | 4 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑎 |
6 | | vb |
. . . . . . . . . . . . . . . . 17
setvar 𝑏 |
7 | 6 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑏 |
8 | 5, 7 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑎, 𝑏〉 |
9 | | vc |
. . . . . . . . . . . . . . . . 17
setvar 𝑐 |
10 | 9 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑐 |
11 | | vd |
. . . . . . . . . . . . . . . . 17
setvar 𝑑 |
12 | 11 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑑 |
13 | 10, 12 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑐, 𝑑〉 |
14 | 8, 13 | cop 4567 |
. . . . . . . . . . . . . 14
class
〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 |
15 | 3, 14 | wceq 1539 |
. . . . . . . . . . . . 13
wff 𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 |
16 | | vq |
. . . . . . . . . . . . . . 15
setvar 𝑞 |
17 | 16 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑞 |
18 | | vx |
. . . . . . . . . . . . . . . . 17
setvar 𝑥 |
19 | 18 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑥 |
20 | | vy |
. . . . . . . . . . . . . . . . 17
setvar 𝑦 |
21 | 20 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑦 |
22 | 19, 21 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑥, 𝑦〉 |
23 | | vz |
. . . . . . . . . . . . . . . . 17
setvar 𝑧 |
24 | 23 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑧 |
25 | | vw |
. . . . . . . . . . . . . . . . 17
setvar 𝑤 |
26 | 25 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑤 |
27 | 24, 26 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑧, 𝑤〉 |
28 | 22, 27 | cop 4567 |
. . . . . . . . . . . . . 14
class
〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 |
29 | 17, 28 | wceq 1539 |
. . . . . . . . . . . . 13
wff 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 |
30 | 7, 10 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑏, 𝑐〉 |
31 | | ccolin 34339 |
. . . . . . . . . . . . . . 15
class
Colinear |
32 | 5, 30, 31 | wbr 5074 |
. . . . . . . . . . . . . 14
wff 𝑎 Colinear 〈𝑏, 𝑐〉 |
33 | 5, 30 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑎, 〈𝑏, 𝑐〉〉 |
34 | 21, 24 | cop 4567 |
. . . . . . . . . . . . . . . 16
class
〈𝑦, 𝑧〉 |
35 | 19, 34 | cop 4567 |
. . . . . . . . . . . . . . 15
class
〈𝑥, 〈𝑦, 𝑧〉〉 |
36 | | ccgr3 34338 |
. . . . . . . . . . . . . . 15
class
Cgr3 |
37 | 33, 35, 36 | wbr 5074 |
. . . . . . . . . . . . . 14
wff 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 |
38 | 5, 12 | cop 4567 |
. . . . . . . . . . . . . . . 16
class
〈𝑎, 𝑑〉 |
39 | 19, 26 | cop 4567 |
. . . . . . . . . . . . . . . 16
class
〈𝑥, 𝑤〉 |
40 | | ccgr 27258 |
. . . . . . . . . . . . . . . 16
class
Cgr |
41 | 38, 39, 40 | wbr 5074 |
. . . . . . . . . . . . . . 15
wff 〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 |
42 | 7, 12 | cop 4567 |
. . . . . . . . . . . . . . . 16
class
〈𝑏, 𝑑〉 |
43 | 21, 26 | cop 4567 |
. . . . . . . . . . . . . . . 16
class
〈𝑦, 𝑤〉 |
44 | 42, 43, 40 | wbr 5074 |
. . . . . . . . . . . . . . 15
wff 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉 |
45 | 41, 44 | wa 396 |
. . . . . . . . . . . . . 14
wff
(〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉) |
46 | 32, 37, 45 | w3a 1086 |
. . . . . . . . . . . . 13
wff (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)) |
47 | 15, 29, 46 | w3a 1086 |
. . . . . . . . . . . 12
wff (𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
48 | | vn |
. . . . . . . . . . . . . 14
setvar 𝑛 |
49 | 48 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑛 |
50 | | cee 27256 |
. . . . . . . . . . . . 13
class
𝔼 |
51 | 49, 50 | cfv 6433 |
. . . . . . . . . . . 12
class
(𝔼‘𝑛) |
52 | 47, 25, 51 | wrex 3065 |
. . . . . . . . . . 11
wff
∃𝑤 ∈
(𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
53 | 52, 23, 51 | wrex 3065 |
. . . . . . . . . 10
wff
∃𝑧 ∈
(𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
54 | 53, 20, 51 | wrex 3065 |
. . . . . . . . 9
wff
∃𝑦 ∈
(𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
55 | 54, 18, 51 | wrex 3065 |
. . . . . . . 8
wff
∃𝑥 ∈
(𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
56 | 55, 11, 51 | wrex 3065 |
. . . . . . 7
wff
∃𝑑 ∈
(𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
57 | 56, 9, 51 | wrex 3065 |
. . . . . 6
wff
∃𝑐 ∈
(𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
58 | 57, 6, 51 | wrex 3065 |
. . . . 5
wff
∃𝑏 ∈
(𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
59 | 58, 4, 51 | wrex 3065 |
. . . 4
wff
∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
60 | | cn 11973 |
. . . 4
class
ℕ |
61 | 59, 48, 60 | wrex 3065 |
. . 3
wff
∃𝑛 ∈
ℕ ∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉))) |
62 | 61, 2, 16 | copab 5136 |
. 2
class
{〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} |
63 | 1, 62 | wceq 1539 |
1
wff FiveSeg =
{〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} |