| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-chn | Structured version Visualization version GIF version | ||
| Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| df-chn | ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | c.lt | . . 3 class < | |
| 3 | 1, 2 | cchn 32930 | . 2 class ( < Chain𝐴) |
| 4 | vn | . . . . . . . 8 setvar 𝑛 | |
| 5 | 4 | cv 1539 | . . . . . . 7 class 𝑛 |
| 6 | c1 11069 | . . . . . . 7 class 1 | |
| 7 | cmin 11405 | . . . . . . 7 class − | |
| 8 | 5, 6, 7 | co 7387 | . . . . . 6 class (𝑛 − 1) |
| 9 | vc | . . . . . . 7 setvar 𝑐 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑐 |
| 11 | 8, 10 | cfv 6511 | . . . . 5 class (𝑐‘(𝑛 − 1)) |
| 12 | 5, 10 | cfv 6511 | . . . . 5 class (𝑐‘𝑛) |
| 13 | 11, 12, 2 | wbr 5107 | . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 14 | 10 | cdm 5638 | . . . . 5 class dom 𝑐 |
| 15 | cc0 11068 | . . . . . 6 class 0 | |
| 16 | 15 | csn 4589 | . . . . 5 class {0} |
| 17 | 14, 16 | cdif 3911 | . . . 4 class (dom 𝑐 ∖ {0}) |
| 18 | 13, 4, 17 | wral 3044 | . . 3 wff ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 19 | 1 | cword 14478 | . . 3 class Word 𝐴 |
| 20 | 18, 9, 19 | crab 3405 | . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| 21 | 3, 20 | wceq 1540 | 1 wff ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ischn 32932 |
| Copyright terms: Public domain | W3C validator |