Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-chn Structured version   Visualization version   GIF version

Definition df-chn 32978
Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
df-chn ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Distinct variable groups:   𝐴,𝑐,𝑛   < ,𝑐,𝑛

Detailed syntax breakdown of Definition df-chn
StepHypRef Expression
1 cA . . 3 class 𝐴
2 c.lt . . 3 class <
31, 2cchn 32977 . 2 class ( < Chain𝐴)
4 vn . . . . . . . 8 setvar 𝑛
54cv 1536 . . . . . . 7 class 𝑛
6 c1 11185 . . . . . . 7 class 1
7 cmin 11520 . . . . . . 7 class
85, 6, 7co 7448 . . . . . 6 class (𝑛 − 1)
9 vc . . . . . . 7 setvar 𝑐
109cv 1536 . . . . . 6 class 𝑐
118, 10cfv 6573 . . . . 5 class (𝑐‘(𝑛 − 1))
125, 10cfv 6573 . . . . 5 class (𝑐𝑛)
1311, 12, 2wbr 5166 . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐𝑛)
1410cdm 5700 . . . . 5 class dom 𝑐
15 cc0 11184 . . . . . 6 class 0
1615csn 4648 . . . . 5 class {0}
1714, 16cdif 3973 . . . 4 class (dom 𝑐 ∖ {0})
1813, 4, 17wral 3067 . . 3 wff 𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)
191cword 14562 . . 3 class Word 𝐴
2018, 9, 19crab 3443 . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
213, 20wceq 1537 1 wff ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Colors of variables: wff setvar class
This definition is referenced by:  ischn  32979
  Copyright terms: Public domain W3C validator