Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-chn Structured version   Visualization version   GIF version

Definition df-chn 32990
Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
df-chn ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Distinct variable groups:   𝐴,𝑐,𝑛   < ,𝑐,𝑛

Detailed syntax breakdown of Definition df-chn
StepHypRef Expression
1 cA . . 3 class 𝐴
2 c.lt . . 3 class <
31, 2cchn 32989 . 2 class ( < Chain𝐴)
4 vn . . . . . . . 8 setvar 𝑛
54cv 1539 . . . . . . 7 class 𝑛
6 c1 11135 . . . . . . 7 class 1
7 cmin 11471 . . . . . . 7 class
85, 6, 7co 7410 . . . . . 6 class (𝑛 − 1)
9 vc . . . . . . 7 setvar 𝑐
109cv 1539 . . . . . 6 class 𝑐
118, 10cfv 6536 . . . . 5 class (𝑐‘(𝑛 − 1))
125, 10cfv 6536 . . . . 5 class (𝑐𝑛)
1311, 12, 2wbr 5124 . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐𝑛)
1410cdm 5659 . . . . 5 class dom 𝑐
15 cc0 11134 . . . . . 6 class 0
1615csn 4606 . . . . 5 class {0}
1714, 16cdif 3928 . . . 4 class (dom 𝑐 ∖ {0})
1813, 4, 17wral 3052 . . 3 wff 𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)
191cword 14536 . . 3 class Word 𝐴
2018, 9, 19crab 3420 . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
213, 20wceq 1540 1 wff ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Colors of variables: wff setvar class
This definition is referenced by:  ischn  32991
  Copyright terms: Public domain W3C validator