| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-chn | Structured version Visualization version GIF version | ||
| Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| df-chn | ⊢ ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | c.lt | . . 3 class < | |
| 3 | 1, 2 | cchn 18513 | . 2 class ( < Chain 𝐴) |
| 4 | vn | . . . . . . . 8 setvar 𝑛 | |
| 5 | 4 | cv 1540 | . . . . . . 7 class 𝑛 |
| 6 | c1 11014 | . . . . . . 7 class 1 | |
| 7 | cmin 11351 | . . . . . . 7 class − | |
| 8 | 5, 6, 7 | co 7352 | . . . . . 6 class (𝑛 − 1) |
| 9 | vc | . . . . . . 7 setvar 𝑐 | |
| 10 | 9 | cv 1540 | . . . . . 6 class 𝑐 |
| 11 | 8, 10 | cfv 6486 | . . . . 5 class (𝑐‘(𝑛 − 1)) |
| 12 | 5, 10 | cfv 6486 | . . . . 5 class (𝑐‘𝑛) |
| 13 | 11, 12, 2 | wbr 5093 | . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 14 | 10 | cdm 5619 | . . . . 5 class dom 𝑐 |
| 15 | cc0 11013 | . . . . . 6 class 0 | |
| 16 | 15 | csn 4575 | . . . . 5 class {0} |
| 17 | 14, 16 | cdif 3895 | . . . 4 class (dom 𝑐 ∖ {0}) |
| 18 | 13, 4, 17 | wral 3048 | . . 3 wff ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 19 | 1 | cword 14422 | . . 3 class Word 𝐴 |
| 20 | 18, 9, 19 | crab 3396 | . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| 21 | 3, 20 | wceq 1541 | 1 wff ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ischn 18515 nfchnd 18519 chneq1 18520 chneq2 18521 |
| Copyright terms: Public domain | W3C validator |