MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-chn Structured version   Visualization version   GIF version

Definition df-chn 18512
Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
df-chn ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Distinct variable groups:   𝐴,𝑐,𝑛   < ,𝑐,𝑛

Detailed syntax breakdown of Definition df-chn
StepHypRef Expression
1 cA . . 3 class 𝐴
2 c.lt . . 3 class <
31, 2cchn 18511 . 2 class ( < Chain 𝐴)
4 vn . . . . . . . 8 setvar 𝑛
54cv 1540 . . . . . . 7 class 𝑛
6 c1 11007 . . . . . . 7 class 1
7 cmin 11344 . . . . . . 7 class
85, 6, 7co 7346 . . . . . 6 class (𝑛 − 1)
9 vc . . . . . . 7 setvar 𝑐
109cv 1540 . . . . . 6 class 𝑐
118, 10cfv 6481 . . . . 5 class (𝑐‘(𝑛 − 1))
125, 10cfv 6481 . . . . 5 class (𝑐𝑛)
1311, 12, 2wbr 5091 . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐𝑛)
1410cdm 5616 . . . . 5 class dom 𝑐
15 cc0 11006 . . . . . 6 class 0
1615csn 4576 . . . . 5 class {0}
1714, 16cdif 3899 . . . 4 class (dom 𝑐 ∖ {0})
1813, 4, 17wral 3047 . . 3 wff 𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)
191cword 14420 . . 3 class Word 𝐴
2018, 9, 19crab 3395 . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
213, 20wceq 1541 1 wff ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Colors of variables: wff setvar class
This definition is referenced by:  ischn  18513  nfchnd  18517  chneq1  18518  chneq2  18519
  Copyright terms: Public domain W3C validator