Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-chn Structured version   Visualization version   GIF version

Definition df-chn 32960
Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
df-chn ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Distinct variable groups:   𝐴,𝑐,𝑛   < ,𝑐,𝑛

Detailed syntax breakdown of Definition df-chn
StepHypRef Expression
1 cA . . 3 class 𝐴
2 c.lt . . 3 class <
31, 2cchn 32959 . 2 class ( < Chain𝐴)
4 vn . . . . . . . 8 setvar 𝑛
54cv 1539 . . . . . . 7 class 𝑛
6 c1 11029 . . . . . . 7 class 1
7 cmin 11365 . . . . . . 7 class
85, 6, 7co 7353 . . . . . 6 class (𝑛 − 1)
9 vc . . . . . . 7 setvar 𝑐
109cv 1539 . . . . . 6 class 𝑐
118, 10cfv 6486 . . . . 5 class (𝑐‘(𝑛 − 1))
125, 10cfv 6486 . . . . 5 class (𝑐𝑛)
1311, 12, 2wbr 5095 . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐𝑛)
1410cdm 5623 . . . . 5 class dom 𝑐
15 cc0 11028 . . . . . 6 class 0
1615csn 4579 . . . . 5 class {0}
1714, 16cdif 3902 . . . 4 class (dom 𝑐 ∖ {0})
1813, 4, 17wral 3044 . . 3 wff 𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)
191cword 14438 . . 3 class Word 𝐴
2018, 9, 19crab 3396 . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
213, 20wceq 1540 1 wff ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Colors of variables: wff setvar class
This definition is referenced by:  ischn  32961
  Copyright terms: Public domain W3C validator