MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-chn Structured version   Visualization version   GIF version

Definition df-chn 18514
Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
df-chn ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Distinct variable groups:   𝐴,𝑐,𝑛   < ,𝑐,𝑛

Detailed syntax breakdown of Definition df-chn
StepHypRef Expression
1 cA . . 3 class 𝐴
2 c.lt . . 3 class <
31, 2cchn 18513 . 2 class ( < Chain 𝐴)
4 vn . . . . . . . 8 setvar 𝑛
54cv 1540 . . . . . . 7 class 𝑛
6 c1 11014 . . . . . . 7 class 1
7 cmin 11351 . . . . . . 7 class
85, 6, 7co 7352 . . . . . 6 class (𝑛 − 1)
9 vc . . . . . . 7 setvar 𝑐
109cv 1540 . . . . . 6 class 𝑐
118, 10cfv 6486 . . . . 5 class (𝑐‘(𝑛 − 1))
125, 10cfv 6486 . . . . 5 class (𝑐𝑛)
1311, 12, 2wbr 5093 . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐𝑛)
1410cdm 5619 . . . . 5 class dom 𝑐
15 cc0 11013 . . . . . 6 class 0
1615csn 4575 . . . . 5 class {0}
1714, 16cdif 3895 . . . 4 class (dom 𝑐 ∖ {0})
1813, 4, 17wral 3048 . . 3 wff 𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)
191cword 14422 . . 3 class Word 𝐴
2018, 9, 19crab 3396 . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
213, 20wceq 1541 1 wff ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Colors of variables: wff setvar class
This definition is referenced by:  ischn  18515  nfchnd  18519  chneq1  18520  chneq2  18521
  Copyright terms: Public domain W3C validator