| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-chn | Structured version Visualization version GIF version | ||
| Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| df-chn | ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | c.lt | . . 3 class < | |
| 3 | 1, 2 | cchn 32989 | . 2 class ( < Chain𝐴) |
| 4 | vn | . . . . . . . 8 setvar 𝑛 | |
| 5 | 4 | cv 1539 | . . . . . . 7 class 𝑛 |
| 6 | c1 11135 | . . . . . . 7 class 1 | |
| 7 | cmin 11471 | . . . . . . 7 class − | |
| 8 | 5, 6, 7 | co 7410 | . . . . . 6 class (𝑛 − 1) |
| 9 | vc | . . . . . . 7 setvar 𝑐 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑐 |
| 11 | 8, 10 | cfv 6536 | . . . . 5 class (𝑐‘(𝑛 − 1)) |
| 12 | 5, 10 | cfv 6536 | . . . . 5 class (𝑐‘𝑛) |
| 13 | 11, 12, 2 | wbr 5124 | . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 14 | 10 | cdm 5659 | . . . . 5 class dom 𝑐 |
| 15 | cc0 11134 | . . . . . 6 class 0 | |
| 16 | 15 | csn 4606 | . . . . 5 class {0} |
| 17 | 14, 16 | cdif 3928 | . . . 4 class (dom 𝑐 ∖ {0}) |
| 18 | 13, 4, 17 | wral 3052 | . . 3 wff ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 19 | 1 | cword 14536 | . . 3 class Word 𝐴 |
| 20 | 18, 9, 19 | crab 3420 | . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| 21 | 3, 20 | wceq 1540 | 1 wff ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ischn 32991 |
| Copyright terms: Public domain | W3C validator |