Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-chn Structured version   Visualization version   GIF version

Definition df-chn 32878
Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
df-chn ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Distinct variable groups:   𝐴,𝑐,𝑛   < ,𝑐,𝑛

Detailed syntax breakdown of Definition df-chn
StepHypRef Expression
1 cA . . 3 class 𝐴
2 c.lt . . 3 class <
31, 2cchn 32877 . 2 class ( < Chain𝐴)
4 vn . . . . . . . 8 setvar 𝑛
54cv 1533 . . . . . . 7 class 𝑛
6 c1 11150 . . . . . . 7 class 1
7 cmin 11485 . . . . . . 7 class
85, 6, 7co 7416 . . . . . 6 class (𝑛 − 1)
9 vc . . . . . . 7 setvar 𝑐
109cv 1533 . . . . . 6 class 𝑐
118, 10cfv 6546 . . . . 5 class (𝑐‘(𝑛 − 1))
125, 10cfv 6546 . . . . 5 class (𝑐𝑛)
1311, 12, 2wbr 5145 . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐𝑛)
1410cdm 5674 . . . . 5 class dom 𝑐
15 cc0 11149 . . . . . 6 class 0
1615csn 4623 . . . . 5 class {0}
1714, 16cdif 3943 . . . 4 class (dom 𝑐 ∖ {0})
1813, 4, 17wral 3051 . . 3 wff 𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)
191cword 14517 . . 3 class Word 𝐴
2018, 9, 19crab 3419 . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
213, 20wceq 1534 1 wff ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
Colors of variables: wff setvar class
This definition is referenced by:  ischn  32879
  Copyright terms: Public domain W3C validator