| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-chn | Structured version Visualization version GIF version | ||
| Description: Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| df-chn | ⊢ ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | c.lt | . . 3 class < | |
| 3 | 1, 2 | cchn 18511 | . 2 class ( < Chain 𝐴) |
| 4 | vn | . . . . . . . 8 setvar 𝑛 | |
| 5 | 4 | cv 1540 | . . . . . . 7 class 𝑛 |
| 6 | c1 11007 | . . . . . . 7 class 1 | |
| 7 | cmin 11344 | . . . . . . 7 class − | |
| 8 | 5, 6, 7 | co 7346 | . . . . . 6 class (𝑛 − 1) |
| 9 | vc | . . . . . . 7 setvar 𝑐 | |
| 10 | 9 | cv 1540 | . . . . . 6 class 𝑐 |
| 11 | 8, 10 | cfv 6481 | . . . . 5 class (𝑐‘(𝑛 − 1)) |
| 12 | 5, 10 | cfv 6481 | . . . . 5 class (𝑐‘𝑛) |
| 13 | 11, 12, 2 | wbr 5091 | . . . 4 wff (𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 14 | 10 | cdm 5616 | . . . . 5 class dom 𝑐 |
| 15 | cc0 11006 | . . . . . 6 class 0 | |
| 16 | 15 | csn 4576 | . . . . 5 class {0} |
| 17 | 14, 16 | cdif 3899 | . . . 4 class (dom 𝑐 ∖ {0}) |
| 18 | 13, 4, 17 | wral 3047 | . . 3 wff ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) |
| 19 | 1 | cword 14420 | . . 3 class Word 𝐴 |
| 20 | 18, 9, 19 | crab 3395 | . 2 class {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| 21 | 3, 20 | wceq 1541 | 1 wff ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ischn 18513 nfchnd 18517 chneq1 18518 chneq2 18519 |
| Copyright terms: Public domain | W3C validator |