| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ischn | Structured version Visualization version GIF version | ||
| Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ischn | ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5850 | . . . 4 ⊢ (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶) | |
| 2 | 1 | difeq1d 4078 | . . 3 ⊢ (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0})) |
| 3 | fveq1 6825 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) | |
| 4 | fveq1 6825 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑛) = (𝐶‘𝑛)) | |
| 5 | 3, 4 | breq12d 5108 | . . 3 ⊢ (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 6 | 2, 5 | raleqbidv 3310 | . 2 ⊢ (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 7 | df-chn 32960 | . 2 ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | |
| 8 | 6, 7 | elrab2 3653 | 1 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3902 {csn 4579 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 − cmin 11365 Word cword 14438 Chaincchn 32959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 df-chn 32960 |
| This theorem is referenced by: chnwrd 32962 chnltm1 32963 pfxchn 32964 s1chn 32965 chnind 32966 chnso 32969 chnccats1 32970 |
| Copyright terms: Public domain | W3C validator |