![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ischn | Structured version Visualization version GIF version |
Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
ischn | ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5923 | . . . 4 ⊢ (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶) | |
2 | 1 | difeq1d 4148 | . . 3 ⊢ (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0})) |
3 | fveq1 6914 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) | |
4 | fveq1 6914 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑛) = (𝐶‘𝑛)) | |
5 | 3, 4 | breq12d 5179 | . . 3 ⊢ (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
6 | 2, 5 | raleqbidv 3354 | . 2 ⊢ (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
7 | df-chn 32970 | . 2 ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | |
8 | 6, 7 | elrab2 3711 | 1 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 {csn 4648 class class class wbr 5166 dom cdm 5695 ‘cfv 6568 (class class class)co 7443 0cc0 11178 1c1 11179 − cmin 11514 Word cword 14556 Chaincchn 32969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5705 df-iota 6520 df-fv 6576 df-chn 32970 |
This theorem is referenced by: chnwrd 32972 chnltm1 32973 pfxchn 32974 chnind 32975 chnso 32978 |
Copyright terms: Public domain | W3C validator |