MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ischn Structured version   Visualization version   GIF version

Theorem ischn 18515
Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
ischn (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
Distinct variable groups:   < ,𝑛   𝐴,𝑛   𝐶,𝑛

Proof of Theorem ischn
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5847 . . . 4 (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶)
21difeq1d 4074 . . 3 (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0}))
3 fveq1 6827 . . . 4 (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
4 fveq1 6827 . . . 4 (𝑐 = 𝐶 → (𝑐𝑛) = (𝐶𝑛))
53, 4breq12d 5106 . . 3 (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
62, 5raleqbidv 3313 . 2 (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
7 df-chn 18514 . 2 ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
86, 7elrab2 3646 1 (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cdif 3895  {csn 4575   class class class wbr 5093  dom cdm 5619  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  cmin 11351  Word cword 14422   Chain cchn 18513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-dm 5629  df-iota 6442  df-fv 6494  df-chn 18514
This theorem is referenced by:  chnwrd  18516  chnltm1  18517  pfxchn  18518  chnrss  18523  chndss  18524  nulchn  18527  s1chn  18528  chnind  18529  chnso  18532  chnccats1  18533  chnccat  18534  chnrev  18535  ex-chn1  18545  ex-chn2  18546  chnsubseq  47003
  Copyright terms: Public domain W3C validator