| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ischn | Structured version Visualization version GIF version | ||
| Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ischn | ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5880 | . . . 4 ⊢ (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶) | |
| 2 | 1 | difeq1d 4098 | . . 3 ⊢ (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0})) |
| 3 | fveq1 6871 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) | |
| 4 | fveq1 6871 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑛) = (𝐶‘𝑛)) | |
| 5 | 3, 4 | breq12d 5129 | . . 3 ⊢ (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 6 | 2, 5 | raleqbidv 3323 | . 2 ⊢ (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 7 | df-chn 32904 | . 2 ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | |
| 8 | 6, 7 | elrab2 3672 | 1 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∖ cdif 3921 {csn 4599 class class class wbr 5116 dom cdm 5651 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 − cmin 11458 Word cword 14519 Chaincchn 32903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-dm 5661 df-iota 6480 df-fv 6535 df-chn 32904 |
| This theorem is referenced by: chnwrd 32906 chnltm1 32907 pfxchn 32908 s1chn 32909 chnind 32910 chnso 32913 chnccats1 32914 |
| Copyright terms: Public domain | W3C validator |