| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ischn | Structured version Visualization version GIF version | ||
| Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ischn | ⊢ (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5843 | . . . 4 ⊢ (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶) | |
| 2 | 1 | difeq1d 4075 | . . 3 ⊢ (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0})) |
| 3 | fveq1 6821 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) | |
| 4 | fveq1 6821 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑛) = (𝐶‘𝑛)) | |
| 5 | 3, 4 | breq12d 5104 | . . 3 ⊢ (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 6 | 2, 5 | raleqbidv 3312 | . 2 ⊢ (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 7 | df-chn 18509 | . 2 ⊢ ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | |
| 8 | 6, 7 | elrab2 3650 | 1 ⊢ (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3899 {csn 4576 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 − cmin 11341 Word cword 14417 Chain cchn 18508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-chn 18509 |
| This theorem is referenced by: chnwrd 18511 chnltm1 18512 pfxchn 18513 chnrss 18518 chndss 18519 nulchn 18522 s1chn 18523 chnind 18524 chnso 18527 chnccats1 18528 chnccat 18529 chnrev 18530 ex-chn1 18540 ex-chn2 18541 |
| Copyright terms: Public domain | W3C validator |