Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ischn Structured version   Visualization version   GIF version

Theorem ischn 32961
Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
ischn (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
Distinct variable groups:   < ,𝑛   𝐴,𝑛   𝐶,𝑛

Proof of Theorem ischn
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5850 . . . 4 (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶)
21difeq1d 4078 . . 3 (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0}))
3 fveq1 6825 . . . 4 (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
4 fveq1 6825 . . . 4 (𝑐 = 𝐶 → (𝑐𝑛) = (𝐶𝑛))
53, 4breq12d 5108 . . 3 (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
62, 5raleqbidv 3310 . 2 (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
7 df-chn 32960 . 2 ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
86, 7elrab2 3653 1 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3902  {csn 4579   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  cmin 11365  Word cword 14438  Chaincchn 32959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-dm 5633  df-iota 6442  df-fv 6494  df-chn 32960
This theorem is referenced by:  chnwrd  32962  chnltm1  32963  pfxchn  32964  s1chn  32965  chnind  32966  chnso  32969  chnccats1  32970
  Copyright terms: Public domain W3C validator