Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ischn Structured version   Visualization version   GIF version

Theorem ischn 32938
Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
ischn (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
Distinct variable groups:   < ,𝑛   𝐴,𝑛   𝐶,𝑛

Proof of Theorem ischn
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5869 . . . 4 (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶)
21difeq1d 4090 . . 3 (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0}))
3 fveq1 6859 . . . 4 (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
4 fveq1 6859 . . . 4 (𝑐 = 𝐶 → (𝑐𝑛) = (𝐶𝑛))
53, 4breq12d 5122 . . 3 (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
62, 5raleqbidv 3321 . 2 (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
7 df-chn 32937 . 2 ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
86, 7elrab2 3664 1 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cdif 3913  {csn 4591   class class class wbr 5109  dom cdm 5640  cfv 6513  (class class class)co 7389  0cc0 11074  1c1 11075  cmin 11411  Word cword 14484  Chaincchn 32936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-dm 5650  df-iota 6466  df-fv 6521  df-chn 32937
This theorem is referenced by:  chnwrd  32939  chnltm1  32940  pfxchn  32941  s1chn  32942  chnind  32943  chnso  32946  chnccats1  32947
  Copyright terms: Public domain W3C validator