| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ischn | Structured version Visualization version GIF version | ||
| Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ischn | ⊢ (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5847 | . . . 4 ⊢ (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶) | |
| 2 | 1 | difeq1d 4074 | . . 3 ⊢ (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0})) |
| 3 | fveq1 6827 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) | |
| 4 | fveq1 6827 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑛) = (𝐶‘𝑛)) | |
| 5 | 3, 4 | breq12d 5106 | . . 3 ⊢ (𝑐 = 𝐶 → ((𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ (𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 6 | 2, 5 | raleqbidv 3313 | . 2 ⊢ (𝑐 = 𝐶 → (∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛) ↔ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 7 | df-chn 18514 | . 2 ⊢ ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | |
| 8 | 6, 7 | elrab2 3646 | 1 ⊢ (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 {csn 4575 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 − cmin 11351 Word cword 14422 Chain cchn 18513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-dm 5629 df-iota 6442 df-fv 6494 df-chn 18514 |
| This theorem is referenced by: chnwrd 18516 chnltm1 18517 pfxchn 18518 chnrss 18523 chndss 18524 nulchn 18527 s1chn 18528 chnind 18529 chnso 18532 chnccats1 18533 chnccat 18534 chnrev 18535 ex-chn1 18545 ex-chn2 18546 chnsubseq 47003 |
| Copyright terms: Public domain | W3C validator |