Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-clintop | Structured version Visualization version GIF version |
Description: Function mapping a set to the class of all closed (internal binary) operations for this set, see definition in section 1.2 of [Hall] p. 2, definition in section I.1 of [Bruck] p. 1, or definition 1 in [BourbakiAlg1] p. 1, where it is called "a law of composition". (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
df-clintop | ⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cclintop 45279 | . 2 class clIntOp | |
2 | vm | . . 3 setvar 𝑚 | |
3 | cvv 3422 | . . 3 class V | |
4 | 2 | cv 1538 | . . . 4 class 𝑚 |
5 | cintop 45278 | . . . 4 class intOp | |
6 | 4, 4, 5 | co 7255 | . . 3 class (𝑚 intOp 𝑚) |
7 | 2, 3, 6 | cmpt 5153 | . 2 class (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) |
8 | 1, 7 | wceq 1539 | 1 wff clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) |
Colors of variables: wff setvar class |
This definition is referenced by: clintopval 45286 |
Copyright terms: Public domain | W3C validator |