Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clintopval Structured version   Visualization version   GIF version

Theorem clintopval 48234
Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
clintopval (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))

Proof of Theorem clintopval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-clintop 48230 . 2 clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚))
2 id 22 . . . 4 (𝑚 = 𝑀𝑚 = 𝑀)
32, 2oveq12d 7364 . . 3 (𝑚 = 𝑀 → (𝑚 intOp 𝑚) = (𝑀 intOp 𝑀))
4 intopval 48232 . . . 4 ((𝑀𝑉𝑀𝑉) → (𝑀 intOp 𝑀) = (𝑀m (𝑀 × 𝑀)))
54anidms 566 . . 3 (𝑀𝑉 → (𝑀 intOp 𝑀) = (𝑀m (𝑀 × 𝑀)))
63, 5sylan9eqr 2788 . 2 ((𝑀𝑉𝑚 = 𝑀) → (𝑚 intOp 𝑚) = (𝑀m (𝑀 × 𝑀)))
7 elex 3457 . 2 (𝑀𝑉𝑀 ∈ V)
8 ovexd 7381 . 2 (𝑀𝑉 → (𝑀m (𝑀 × 𝑀)) ∈ V)
91, 6, 7, 8fvmptd2 6937 1 (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436   × cxp 5614  cfv 6481  (class class class)co 7346  m cmap 8750   intOp cintop 48226   clIntOp cclintop 48227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-intop 48229  df-clintop 48230
This theorem is referenced by:  assintopmap  48236  isclintop  48237
  Copyright terms: Public domain W3C validator