Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clintopval Structured version   Visualization version   GIF version

Theorem clintopval 47927
Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
clintopval (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))

Proof of Theorem clintopval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-clintop 47923 . 2 clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚))
2 id 22 . . . 4 (𝑚 = 𝑀𝑚 = 𝑀)
32, 2oveq12d 7466 . . 3 (𝑚 = 𝑀 → (𝑚 intOp 𝑚) = (𝑀 intOp 𝑀))
4 intopval 47925 . . . 4 ((𝑀𝑉𝑀𝑉) → (𝑀 intOp 𝑀) = (𝑀m (𝑀 × 𝑀)))
54anidms 566 . . 3 (𝑀𝑉 → (𝑀 intOp 𝑀) = (𝑀m (𝑀 × 𝑀)))
63, 5sylan9eqr 2802 . 2 ((𝑀𝑉𝑚 = 𝑀) → (𝑚 intOp 𝑚) = (𝑀m (𝑀 × 𝑀)))
7 elex 3509 . 2 (𝑀𝑉𝑀 ∈ V)
8 ovexd 7483 . 2 (𝑀𝑉 → (𝑀m (𝑀 × 𝑀)) ∈ V)
91, 6, 7, 8fvmptd2 7037 1 (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488   × cxp 5698  cfv 6573  (class class class)co 7448  m cmap 8884   intOp cintop 47919   clIntOp cclintop 47920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-intop 47922  df-clintop 47923
This theorem is referenced by:  assintopmap  47929  isclintop  47930
  Copyright terms: Public domain W3C validator