Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clintopval | Structured version Visualization version GIF version |
Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
clintopval | ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clintop 45373 | . 2 ⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) | |
2 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
3 | 2, 2 | oveq12d 7290 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑚 intOp 𝑚) = (𝑀 intOp 𝑀)) |
4 | intopval 45375 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑀 ∈ 𝑉) → (𝑀 intOp 𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | |
5 | 4 | anidms 567 | . . 3 ⊢ (𝑀 ∈ 𝑉 → (𝑀 intOp 𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) |
6 | 3, 5 | sylan9eqr 2802 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑚 = 𝑀) → (𝑚 intOp 𝑚) = (𝑀 ↑m (𝑀 × 𝑀))) |
7 | elex 3449 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
8 | ovexd 7307 | . 2 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ↑m (𝑀 × 𝑀)) ∈ V) | |
9 | 1, 6, 7, 8 | fvmptd2 6880 | 1 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 × cxp 5588 ‘cfv 6432 (class class class)co 7272 ↑m cmap 8607 intOp cintop 45369 clIntOp cclintop 45370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-intop 45372 df-clintop 45373 |
This theorem is referenced by: assintopmap 45379 isclintop 45380 |
Copyright terms: Public domain | W3C validator |