| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clintopval | Structured version Visualization version GIF version | ||
| Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| clintopval | ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clintop 48324 | . 2 ⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
| 3 | 2, 2 | oveq12d 7370 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑚 intOp 𝑚) = (𝑀 intOp 𝑀)) |
| 4 | intopval 48326 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑀 ∈ 𝑉) → (𝑀 intOp 𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | |
| 5 | 4 | anidms 566 | . . 3 ⊢ (𝑀 ∈ 𝑉 → (𝑀 intOp 𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) |
| 6 | 3, 5 | sylan9eqr 2790 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑚 = 𝑀) → (𝑚 intOp 𝑚) = (𝑀 ↑m (𝑀 × 𝑀))) |
| 7 | elex 3458 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 8 | ovexd 7387 | . 2 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ↑m (𝑀 × 𝑀)) ∈ V) | |
| 9 | 1, 6, 7, 8 | fvmptd2 6943 | 1 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 intOp cintop 48320 clIntOp cclintop 48321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-intop 48323 df-clintop 48324 |
| This theorem is referenced by: assintopmap 48330 isclintop 48331 |
| Copyright terms: Public domain | W3C validator |