| Metamath
Proof Explorer Theorem List (p. 466 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | omef 46501 | An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 ⇒ ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) | ||
| Theorem | ome0 46502 | The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) ⇒ ⊢ (𝜑 → (𝑂‘∅) = 0) | ||
| Theorem | omessle 46503 | The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐵 ⊆ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ≤ (𝑂‘𝐵)) | ||
| Theorem | omedm 46504 | The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | ||
| Theorem | caragensplit 46505 | If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) | ||
| Theorem | caragenelss 46506 | An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ 𝑋 = ∪ dom 𝑂 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | ||
| Theorem | carageneld 46507* | Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
| Theorem | omecl 46508 | The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) | ||
| Theorem | caragenss 46509 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) | ||
| Theorem | omeunile 46510 | The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → 𝑌 ≼ ω) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤ (Σ^‘(𝑂 ↾ 𝑌))) | ||
| Theorem | caragen0 46511 | The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑆) | ||
| Theorem | omexrcl 46512 | The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) | ||
| Theorem | caragenunidm 46513 | The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
| Theorem | caragensspw 46514 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) | ||
| Theorem | omessre 46515 | If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) | ||
| Theorem | caragenuni 46516 | The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → ∪ 𝑆 = ∪ dom 𝑂) | ||
| Theorem | caragenuncllem 46517 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸 ∪ 𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸 ∪ 𝐹)))) = (𝑂‘𝐴)) | ||
| Theorem | caragenuncl 46518 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
| Theorem | caragendifcl 46519 | The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
| Theorem | caragenfiiuncl 46520* | The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
| Theorem | omeunle 46521 | The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐵 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) | ||
| Theorem | omeiunle 46522* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) | ||
| Theorem | omelesplit 46523 | The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) | ||
| Theorem | omeiunltfirp 46524* | If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) & ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) | ||
| Theorem | omeiunlempt 46525* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) | ||
| Theorem | carageniuncllem1 46526* | The outer measure of 𝐴 ∩ (𝐺‘𝑛) is the sum of the outer measures of 𝐴 ∩ (𝐹‘𝑚). These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))) | ||
| Theorem | carageniuncllem2 46527* | The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝐴 ∖ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌)) | ||
| Theorem | carageniuncl 46528* | The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝑆) | ||
| Theorem | caragenunicl 46529 | The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝑋 ≼ ω) ⇒ ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) | ||
| Theorem | caragensal 46530 | Caratheodory's method generates a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
| Theorem | caratheodorylem1 46531* | Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐸‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (𝑂‘(𝐺‘𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛))))) | ||
| Theorem | caratheodorylem2 46532* | Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸:ℕ⟶𝑆) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) & ⊢ 𝐺 = (𝑘 ∈ ℕ ↦ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))))) | ||
| Theorem | caratheodory 46533 | Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → (𝑂 ↾ 𝑆) ∈ Meas) | ||
| Theorem | 0ome 46534* | The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → 𝑂 ∈ OutMeas) | ||
| Theorem | isomenndlem 46535* | 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑂‘∅) = 0) & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂‘∪ 𝑛 ∈ ℕ (𝑎‘𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))))) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑌) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤ (Σ^‘(𝑂 ↾ 𝑌))) | ||
| Theorem | isomennd 46536* | Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑂‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥) → (𝑂‘𝑦) ≤ (𝑂‘𝑥)) & ⊢ ((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂‘∪ 𝑛 ∈ ℕ (𝑎‘𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))))) ⇒ ⊢ (𝜑 → 𝑂 ∈ OutMeas) | ||
| Theorem | caragenel2d 46537* | Membership in the Caratheodory's construction. Similar to carageneld 46507, but here "less than or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) ≤ (𝑂‘𝑎)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
| Theorem | omege0 46538 | If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 0 ≤ (𝑂‘𝐴)) | ||
| Theorem | omess0 46539 | If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) = 0) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑂‘𝐵) = 0) | ||
| Theorem | caragencmpl 46540 | A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐸 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐸) = 0) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
Proofs for most of the theorems in section 115 of [Fremlin1] | ||
| Syntax | covoln 46541 | Extend class notation with the class of Lebesgue outer measure for the space of multidimensional real numbers. |
| class voln* | ||
| Definition | df-ovoln 46542* | Define the outer measure for the space of multidimensional real numbers. The cardinality of 𝑥 is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )))) | ||
| Syntax | cvoln 46543 | Extend class notation with the class of Lebesgue measure for the space of multidimensional real numbers. |
| class voln | ||
| Definition | df-voln 46544 | Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of 𝑥 is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥)))) | ||
| Theorem | vonval 46545 | Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) | ||
| Theorem | ovnval 46546* | Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )))) | ||
| Theorem | elhoi 46547* | Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) | ||
| Theorem | icoresmbl 46548 | A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ran ([,) ↾ (ℝ × ℝ)) ⊆ dom vol | ||
| Theorem | hoissre 46549* | The projection of a half-open interval onto a single dimension is a subset of ℝ. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) | ||
| Theorem | ovnval2 46550* | Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < ))) | ||
| Theorem | volicorecl 46551 | The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ) | ||
| Theorem | hoiprodcl 46552* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) | ||
| Theorem | hoicvr 46553* | 𝐼 is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)) & ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (ℝ ↑m 𝑋) ⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) | ||
| Theorem | hoissrrn 46554* | A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) | ||
| Theorem | ovn0val 46555 | The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m ∅)) ⇒ ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) | ||
| Theorem | ovnn0val 46556* | The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | ovnval2b 46557* | Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝐿 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf((𝐿‘𝐴), ℝ*, < ))) | ||
| Theorem | volicorescl 46558 | The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ) | ||
| Theorem | ovnprodcl 46559* | The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶((ℝ × ℝ) ↑m 𝑋)) & ⊢ (𝜑 → 𝐼 ∈ ℕ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐹‘𝐼))‘𝑘)) ∈ (0[,)+∞)) | ||
| Theorem | hoiprodcl2 46560* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) & ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → (𝐿‘𝐼) ∈ (0[,)+∞)) | ||
| Theorem | hoicvrrex 46561* | Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ⊆ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) | ||
| Theorem | ovnsupge0 46562* | The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) | ||
| Theorem | ovnlecvr 46563* | Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with 𝑋 the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) & ⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) | ||
| Theorem | ovnpnfelsup 46564* | +∞ is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → +∞ ∈ 𝑀) | ||
| Theorem | ovnsslelem 46565* | The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} & ⊢ 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) | ||
| Theorem | ovnssle 46566 | The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) | ||
| Theorem | ovnlerp 46567* | The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) | ||
| Theorem | ovnf 46568 | The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞)) | ||
| Theorem | ovncvrrp 46569* | The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) & ⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘))) & ⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) ⇒ ⊢ (𝜑 → ∃𝑖 𝑖 ∈ ((𝐷‘𝐴)‘𝐸)) | ||
| Theorem | ovn0lem 46570* | For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))} & ⊢ (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞)) & ⊢ 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ 〈1, 0〉)) ⇒ ⊢ (𝜑 → inf(𝑀, ℝ*, < ) = 0) | ||
| Theorem | ovn0 46571 | For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘∅) = 0) | ||
| Theorem | ovncl 46572 | The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ (0[,]+∞)) | ||
| Theorem | ovn02 46573 | For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 {∅} ↦ 0) | ||
| Theorem | ovnxrcl 46574 | The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ*) | ||
| Theorem | ovnsubaddlem1 46575* | The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) & ⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {ℎ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) & ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) & ⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) & ⊢ (𝜑 → 𝐹:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) | ||
| Theorem | ovnsubaddlem2 46576* | (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) & ⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) & ⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘))) & ⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) | ||
| Theorem | ovnsubadd 46577* | (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛))))) | ||
| Theorem | ovnome 46578 | (voln*‘𝑋) is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set 𝑋. Proposition 115D (a) of [Fremlin1] p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) | ||
| Theorem | vonmea 46579 | (voln‘𝑋) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set 𝑋. Comments in Definition 115E of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln‘𝑋) ∈ Meas) | ||
| Theorem | volicon0 46580 | The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | hsphoif 46581* | 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → ((𝐻‘𝐴)‘𝐵):𝑋⟶ℝ) | ||
| Theorem | hoidmvval 46582* | The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) | ||
| Theorem | hoissrrn2 46583* | A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) | ||
| Theorem | hsphoival 46584* | 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) ⇒ ⊢ (𝜑 → (((𝐻‘𝐴)‘𝐵)‘𝐾) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) | ||
| Theorem | hoiprodcl3 46585* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞)) | ||
| Theorem | volicore 46586 | The Lebesgue measure of a left-closed right-open interval is a real number. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ) | ||
| Theorem | hoidmvcl 46587* | The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) | ||
| Theorem | hoidmv0val 46588* | The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝐴:∅⟶ℝ) & ⊢ (𝜑 → 𝐵:∅⟶ℝ) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘∅)𝐵) = 0) | ||
| Theorem | hoidmvn0val 46589* | The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | ||
| Theorem | hsphoidmvle2 46590* | The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) & ⊢ 𝑋 = (𝑌 ∪ {𝑍}) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) ≤ (𝐴(𝐿‘𝑋)((𝐻‘𝐷)‘𝐵))) | ||
| Theorem | hsphoidmvle 46591* | The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) & ⊢ 𝑋 = (𝑌 ∪ {𝑍}) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) ≤ (𝐴(𝐿‘𝑋)𝐵)) | ||
| Theorem | hoidmvval0 46592* | The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑋 (𝐵‘𝑗) ≤ (𝐴‘𝑗)) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = 0) | ||
| Theorem | hoiprodp1 46593* | The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) & ⊢ 𝑋 = (𝑌 ∪ {𝑍}) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐺 = ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = (𝐺 · (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))))) | ||
| Theorem | sge0hsphoire 46594* | If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) & ⊢ 𝑊 = (𝑌 ∪ {𝑍}) & ⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m 𝑊)) & ⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m 𝑊)) & ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) & ⊢ (𝜑 → 𝑆 ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) | ||
| Theorem | hoidmvval0b 46595* | The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) | ||
| Theorem | hoidmv1lelem1 46596* | The supremum of 𝑈 belongs to 𝑈. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐶:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷:ℕ⟶ℝ) & ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈ ℝ) & ⊢ 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥)) | ||
| Theorem | hoidmv1lelem2 46597* | This is the contradiction proven in step (c) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷:ℕ⟶ℝ) & ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈ ℝ) & ⊢ 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ≤ 𝑆) & ⊢ (𝜑 → 𝑆 < 𝐵) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ((𝐶‘𝐾)[,)(𝐷‘𝐾))) & ⊢ 𝑀 = if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | ||
| Theorem | hoidmv1lelem3 46598* | The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐶:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷:ℕ⟶ℝ) & ⊢ (𝜑 → (𝐴[,)𝐵) ⊆ ∪ 𝑗 ∈ ℕ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) & ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈ ℝ) & ⊢ 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))))) | ||
| Theorem | hoidmv1le 46599* | The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ 𝑋 = {𝑍} & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m 𝑋)) & ⊢ (𝜑 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) | ||
| Theorem | hoidmvlelem1 46600* | The supremum of 𝑈 belongs to 𝑈. Step (c) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) & ⊢ 𝑊 = (𝑌 ∪ {𝑍}) & ⊢ (𝜑 → 𝐴:𝑊⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑊⟶ℝ) & ⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m 𝑊)) & ⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m 𝑊)) & ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) & ⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} & ⊢ 𝑆 = sup(𝑈, ℝ, < ) & ⊢ (𝜑 → (𝐴‘𝑍) < (𝐵‘𝑍)) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝑈) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |