Home | Metamath
Proof Explorer Theorem List (p. 466 of 466) | < Previous Wrap > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Miscellaneous proofs. | ||
Theorem | 5m4e1 46501 | Prove that 5 - 4 = 1. (Contributed by David A. Wheeler, 31-Jan-2017.) |
⊢ (5 − 4) = 1 | ||
Theorem | 2p2ne5 46502 | Prove that 2 + 2 ≠ 5. In George Orwell's "1984", Part One, Chapter Seven, the protagonist Winston notes that, "In the end the Party would announce that two and two made five, and you would have to believe it." http://www.sparknotes.com/lit/1984/section4.rhtml. More generally, the phrase 2 + 2 = 5 has come to represent an obviously false dogma one may be required to believe. See the Wikipedia article for more about this: https://en.wikipedia.org/wiki/2_%2B_2_%3D_5. Unsurprisingly, we can easily prove that this claim is false. (Contributed by David A. Wheeler, 31-Jan-2017.) |
⊢ (2 + 2) ≠ 5 | ||
Theorem | resolution 46503 | Resolution rule. This is the primary inference rule in some automated theorem provers such as prover9. The resolution rule can be traced back to Davis and Putnam (1960). (Contributed by David A. Wheeler, 9-Feb-2017.) |
⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → (𝜓 ∨ 𝜒)) | ||
Theorem | testable 46504 | In classical logic all wffs are testable, that is, it is always true that (¬ 𝜑 ∨ ¬ ¬ 𝜑). This is not necessarily true in intuitionistic logic. In intuitionistic logic, if this statement is true for some 𝜑, then 𝜑 is testable. The proof is trivial because it's simply a special case of the law of the excluded middle, which is true in classical logic but not necessarily true in intuitionisic logic. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) | ||
Theorem | aacllem 46505* | Lemma for other theorems about 𝔸. (Contributed by Brendan Leahy, 3-Jan-2020.) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
Theorem | amgmwlem 46506 | Weighted version of amgmlem 26139. (Contributed by Kunhao Zheng, 19-Jun-2021.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) & ⊢ (𝜑 → 𝑊:𝐴⟶ℝ+) & ⊢ (𝜑 → (ℂfld Σg 𝑊) = 1) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f ↑𝑐𝑊)) ≤ (ℂfld Σg (𝐹 ∘f · 𝑊))) | ||
Theorem | amgmlemALT 46507 | Alternate proof of amgmlem 26139 using amgmwlem 46506. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
Theorem | amgmw2d 46508 | Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 41809). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → (𝑃 + 𝑄) = 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) | ||
Theorem | young2d 46509 | Young's inequality for 𝑛 = 2, a direct application of amgmw2d 46508. (Contributed by Kunhao Zheng, 6-Jul-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) | ||
Theorem | et-ltneverrefl 46510 | Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11084. (New usage is discouraged.) |
⊢ ¬ 𝐴 < 𝐴 | ||
Theorem | natlocalincr 46511* | Global monotonicity on half-open range implies local monotonicity. (Contributed by Ender Ting, 22-Nov-2024.) |
⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) | ||
Theorem | natglobalincr 46512* | Local monotonicity on half-open integer range implies global monotonicity. (Contributed by Ender Ting, 23-Nov-2024.) |
⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) & ⊢ 𝑇 ∈ ℤ ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵‘𝑘) < (𝐵‘𝑡) | ||
Syntax | cupword 46513 | Extend class notation to include the set of strictly increasing sequences. |
class UpWord𝑆 | ||
Definition | df-upword 46514* | Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024.) |
⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | ||
Theorem | upwordnul 46515 | Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
⊢ ∅ ∈ UpWord𝑆 | ||
Theorem | upwordisword 46516 | Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
⊢ (𝐴 ∈ UpWord𝑆 → 𝐴 ∈ Word 𝑆) | ||
Theorem | singoutnword 46517 | Singleton with character out of range 𝑉 is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ 𝐴 ∈ 𝑉 → ¬ 〈“𝐴”〉 ∈ Word 𝑉) | ||
Theorem | singoutnupword 46518 | Singleton with character out of range 𝑆 is not an increasing sequence for that range. (Contributed by Ender Ting, 22-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ 𝐴 ∈ 𝑆 → ¬ 〈“𝐴”〉 ∈ UpWord𝑆) | ||
Theorem | upwordsing 46519 | Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.) |
⊢ 𝐴 ∈ 𝑆 ⇒ ⊢ 〈“𝐴”〉 ∈ UpWord𝑆 | ||
Theorem | upwordsseti 46520 | Strictly increasing sequences with a set given for range form a set. (Contributed by Ender Ting, 21-Nov-2024.) |
⊢ 𝑆 ∈ V ⇒ ⊢ UpWord𝑆 ∈ V | ||
Theorem | tworepnotupword 46521 | Word of two matching characters is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ¬ (〈“𝐴”〉 ++ 〈“𝐴”〉) ∈ UpWord𝑆 |
< Previous Wrap > |
Copyright terms: Public domain | < Previous Wrap > |