| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-assintop | Structured version Visualization version GIF version | ||
| Description: Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in [BourbakiAlg1] p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| df-assintop | ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cassintop 48114 | . 2 class assIntOp | |
| 2 | vm | . . 3 setvar 𝑚 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vo | . . . . . 6 setvar 𝑜 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑜 |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑚 |
| 7 | casslaw 48100 | . . . . 5 class assLaw | |
| 8 | 5, 6, 7 | wbr 5143 | . . . 4 wff 𝑜 assLaw 𝑚 |
| 9 | cclintop 48113 | . . . . 5 class clIntOp | |
| 10 | 6, 9 | cfv 6561 | . . . 4 class ( clIntOp ‘𝑚) |
| 11 | 8, 4, 10 | crab 3436 | . . 3 class {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} |
| 12 | 2, 3, 11 | cmpt 5225 | . 2 class (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) |
| 13 | 1, 12 | wceq 1540 | 1 wff assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: assintopval 48121 |
| Copyright terms: Public domain | W3C validator |