Detailed syntax breakdown of Definition df-cmp
Step | Hyp | Ref
| Expression |
1 | | ccmp 22445 |
. 2
class
Comp |
2 | | vx |
. . . . . . . 8
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
4 | 3 | cuni 4836 |
. . . . . 6
class ∪ 𝑥 |
5 | | vy |
. . . . . . . 8
setvar 𝑦 |
6 | 5 | cv 1538 |
. . . . . . 7
class 𝑦 |
7 | 6 | cuni 4836 |
. . . . . 6
class ∪ 𝑦 |
8 | 4, 7 | wceq 1539 |
. . . . 5
wff ∪ 𝑥 =
∪ 𝑦 |
9 | | vz |
. . . . . . . . 9
setvar 𝑧 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑧 |
11 | 10 | cuni 4836 |
. . . . . . 7
class ∪ 𝑧 |
12 | 4, 11 | wceq 1539 |
. . . . . 6
wff ∪ 𝑥 =
∪ 𝑧 |
13 | 6 | cpw 4530 |
. . . . . . 7
class 𝒫
𝑦 |
14 | | cfn 8691 |
. . . . . . 7
class
Fin |
15 | 13, 14 | cin 3882 |
. . . . . 6
class
(𝒫 𝑦 ∩
Fin) |
16 | 12, 9, 15 | wrex 3064 |
. . . . 5
wff
∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝑥 = ∪ 𝑧 |
17 | 8, 16 | wi 4 |
. . . 4
wff (∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪
𝑧) |
18 | 3 | cpw 4530 |
. . . 4
class 𝒫
𝑥 |
19 | 17, 5, 18 | wral 3063 |
. . 3
wff
∀𝑦 ∈
𝒫 𝑥(∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪
𝑧) |
20 | | ctop 21950 |
. . 3
class
Top |
21 | 19, 2, 20 | crab 3067 |
. 2
class {𝑥 ∈ Top ∣
∀𝑦 ∈ 𝒫
𝑥(∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪
𝑧)} |
22 | 1, 21 | wceq 1539 |
1
wff Comp =
{𝑥 ∈ Top ∣
∀𝑦 ∈ 𝒫
𝑥(∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪
𝑧)} |