![]() |
Metamath
Proof Explorer Theorem List (p. 229 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | chcoeffeq 22801* | The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข ๐ = (Poly1โ๐ ) & โข ๐ = (๐ Mat ๐) & โข ร = (.rโ๐) & โข โ = (-gโ๐) & โข 0 = (0gโ๐) & โข ๐ = (๐ matToPolyMat ๐ ) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (๐ถโ๐) & โข ๐บ = (๐ โ โ0 โฆ if(๐ = 0, ( 0 โ ((๐โ๐) ร (๐โ(๐โ0)))), if(๐ = (๐ + 1), (๐โ(๐โ๐ )), if((๐ + 1) < ๐, 0 , ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐)))))))) & โข ๐ = (Baseโ๐) & โข 1 = (1rโ๐ด) & โข โ = ( ยท๐ โ๐ด) & โข ๐ = (๐ cPolyMatToMat ๐ ) โ โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))โ๐ โ โ0 (๐โ(๐บโ๐)) = (((coe1โ๐พ)โ๐) โ 1 )) | ||
Theorem | cayhamlem3 22802* | Lemma for cayhamlem4 22803. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข ๐ = (Poly1โ๐ ) & โข ๐ = (๐ Mat ๐) & โข ร = (.rโ๐) & โข โ = (-gโ๐) & โข 0 = (0gโ๐) & โข ๐ = (๐ matToPolyMat ๐ ) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (๐ถโ๐) & โข ๐บ = (๐ โ โ0 โฆ if(๐ = 0, ( 0 โ ((๐โ๐) ร (๐โ(๐โ0)))), if(๐ = (๐ + 1), (๐โ(๐โ๐ )), if((๐ + 1) < ๐, 0 , ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐)))))))) & โข ๐ = (Baseโ๐) & โข 1 = (1rโ๐ด) & โข โ = ( ยท๐ โ๐ด) & โข ๐ = (๐ cPolyMatToMat ๐ ) & โข โ = (.gโ(mulGrpโ๐ด)) & โข ยท = (.rโ๐ด) โ โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ด ฮฃg (๐ โ โ0 โฆ (((coe1โ๐พ)โ๐) โ (๐ โ ๐)))) = (๐ด ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐โ(๐บโ๐)))))) | ||
Theorem | cayhamlem4 22803* | Lemma for cayleyhamilton 22805. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข ๐ = (Poly1โ๐ ) & โข ๐ = (๐ Mat ๐) & โข ร = (.rโ๐) & โข โ = (-gโ๐) & โข 0 = (0gโ๐) & โข ๐ = (๐ matToPolyMat ๐ ) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (๐ถโ๐) & โข ๐บ = (๐ โ โ0 โฆ if(๐ = 0, ( 0 โ ((๐โ๐) ร (๐โ(๐โ0)))), if(๐ = (๐ + 1), (๐โ(๐โ๐ )), if((๐ + 1) < ๐, 0 , ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐)))))))) & โข ๐ = (Baseโ๐) & โข 1 = (1rโ๐ด) & โข โ = ( ยท๐ โ๐ด) & โข ๐ = (๐ cPolyMatToMat ๐ ) & โข โ = (.gโ(mulGrpโ๐ด)) & โข ๐ธ = (.gโ(mulGrpโ๐)) โ โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ด ฮฃg (๐ โ โ0 โฆ (((coe1โ๐พ)โ๐) โ (๐ โ ๐)))) = (๐โ(๐ ฮฃg (๐ โ โ0 โฆ ((๐๐ธ(๐โ๐)) ร (๐บโ๐)))))) | ||
Theorem | cayleyhamilton0 22804* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22805 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22806)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข 0 = (0gโ๐ด) & โข 1 = (1rโ๐ด) & โข โ = ( ยท๐ โ๐ด) & โข โ = (.gโ(mulGrpโ๐ด)) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (coe1โ(๐ถโ๐)) & โข ๐ = (Poly1โ๐ ) & โข ๐ = (๐ Mat ๐) & โข ร = (.rโ๐) & โข โ = (-gโ๐) & โข ๐ = (0gโ๐) & โข ๐ = (Baseโ๐) & โข ๐ธ = (.gโ(mulGrpโ๐)) & โข ๐ = (๐ matToPolyMat ๐ ) & โข ๐บ = (๐ โ โ0 โฆ if(๐ = 0, (๐ โ ((๐โ๐) ร (๐โ(๐โ0)))), if(๐ = (๐ + 1), (๐โ(๐โ๐ )), if((๐ + 1) < ๐, ๐, ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐)))))))) & โข ๐ = (๐ cPolyMatToMat ๐ ) โ โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (๐ด ฮฃg (๐ โ โ0 โฆ ((๐พโ๐) โ (๐ โ ๐)))) = 0 ) | ||
Theorem | cayleyhamilton 22805* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข 0 = (0gโ๐ด) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (coe1โ(๐ถโ๐)) & โข โ = ( ยท๐ โ๐ด) & โข โ = (.gโ(mulGrpโ๐ด)) โ โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (๐ด ฮฃg (๐ โ โ0 โฆ ((๐พโ๐) โ (๐ โ ๐)))) = 0 ) | ||
Theorem | cayleyhamiltonALT 22806* | Alternate proof of cayleyhamilton 22805, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 22804 directly, but has the same structure as the proof of cayleyhamilton0 22804. In contrast to the proof of cayleyhamilton0 22804, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข 0 = (0gโ๐ด) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (coe1โ(๐ถโ๐)) & โข โ = ( ยท๐ โ๐ด) & โข โ = (.gโ(mulGrpโ๐ด)) โ โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (๐ด ฮฃg (๐ โ โ0 โฆ ((๐พโ๐) โ (๐ โ ๐)))) = 0 ) | ||
Theorem | cayleyhamilton1 22807* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22805, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (๐นโ๐), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.) |
โข ๐ด = (๐ Mat ๐ ) & โข ๐ต = (Baseโ๐ด) & โข 0 = (0gโ๐ด) & โข ๐ถ = (๐ CharPlyMat ๐ ) & โข ๐พ = (coe1โ(๐ถโ๐)) & โข โ = ( ยท๐ โ๐ด) & โข โ = (.gโ(mulGrpโ๐ด)) & โข ๐ฟ = (Baseโ๐ ) & โข ๐ = (var1โ๐ ) & โข ๐ = (Poly1โ๐ ) & โข ยท = ( ยท๐ โ๐) & โข ๐ธ = (.gโ(mulGrpโ๐)) & โข ๐ = (0gโ๐ ) โ โข (((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐น โ (๐ฟ โm โ0) โง ๐น finSupp ๐)) โ ((๐ถโ๐) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐นโ๐) ยท (๐๐ธ๐)))) โ (๐ด ฮฃg (๐ โ โ0 โฆ ((๐นโ๐) โ (๐ โ ๐)))) = 0 )) | ||
A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union, see toponuni 22829), and it may sometimes be more convenient to consider topologies without reference to the underlying set. This is why we define successively the class of topologies (df-top 22809), then the function which associates with a set the set of topologies on it (df-topon 22826), and finally the class of topological spaces, as extensible structures having an underlying set and a topology on it (df-topsp 22848). Of course, a topology is the same thing as a topology on a set (see toprntopon 22840). | ||
Syntax | ctop 22808 | Syntax for the class of topologies. |
class Top | ||
Definition | df-top 22809* |
Define the class of topologies. It is a proper class (see topnex 22912).
See istopg 22810 and istop2g 22811 for the corresponding characterizations,
using respectively binary intersections like in this definition and
nonempty finite intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
โข Top = {๐ฅ โฃ (โ๐ฆ โ ๐ซ ๐ฅโช ๐ฆ โ ๐ฅ โง โ๐ฆ โ ๐ฅ โ๐ง โ ๐ฅ (๐ฆ โฉ ๐ง) โ ๐ฅ)} | ||
Theorem | istopg 22810* |
Express the predicate "๐ฝ is a topology". See istop2g 22811 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use ๐ to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
โข (๐ฝ โ ๐ด โ (๐ฝ โ Top โ (โ๐ฅ(๐ฅ โ ๐ฝ โ โช ๐ฅ โ ๐ฝ) โง โ๐ฅ โ ๐ฝ โ๐ฆ โ ๐ฝ (๐ฅ โฉ ๐ฆ) โ ๐ฝ))) | ||
Theorem | istop2g 22811* | Express the predicate "๐ฝ is a topology" using nonempty finite intersections instead of binary intersections as in istopg 22810. (Contributed by NM, 19-Jul-2006.) |
โข (๐ฝ โ ๐ด โ (๐ฝ โ Top โ (โ๐ฅ(๐ฅ โ ๐ฝ โ โช ๐ฅ โ ๐ฝ) โง โ๐ฅ((๐ฅ โ ๐ฝ โง ๐ฅ โ โ โง ๐ฅ โ Fin) โ โฉ ๐ฅ โ ๐ฝ)))) | ||
Theorem | uniopn 22812 | The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
โข ((๐ฝ โ Top โง ๐ด โ ๐ฝ) โ โช ๐ด โ ๐ฝ) | ||
Theorem | iunopn 22813* | The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
โข ((๐ฝ โ Top โง โ๐ฅ โ ๐ด ๐ต โ ๐ฝ) โ โช ๐ฅ โ ๐ด ๐ต โ ๐ฝ) | ||
Theorem | inopn 22814 | The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
โข ((๐ฝ โ Top โง ๐ด โ ๐ฝ โง ๐ต โ ๐ฝ) โ (๐ด โฉ ๐ต) โ ๐ฝ) | ||
Theorem | fitop 22815 | A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.) |
โข (๐ฝ โ Top โ (fiโ๐ฝ) = ๐ฝ) | ||
Theorem | fiinopn 22816 | The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
โข (๐ฝ โ Top โ ((๐ด โ ๐ฝ โง ๐ด โ โ โง ๐ด โ Fin) โ โฉ ๐ด โ ๐ฝ)) | ||
Theorem | iinopn 22817* | The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.) |
โข ((๐ฝ โ Top โง (๐ด โ Fin โง ๐ด โ โ โง โ๐ฅ โ ๐ด ๐ต โ ๐ฝ)) โ โฉ ๐ฅ โ ๐ด ๐ต โ ๐ฝ) | ||
Theorem | unopn 22818 | The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
โข ((๐ฝ โ Top โง ๐ด โ ๐ฝ โง ๐ต โ ๐ฝ) โ (๐ด โช ๐ต) โ ๐ฝ) | ||
Theorem | 0opn 22819 | The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
โข (๐ฝ โ Top โ โ โ ๐ฝ) | ||
Theorem | 0ntop 22820 | The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
โข ยฌ โ โ Top | ||
Theorem | topopn 22821 | The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
โข ๐ = โช ๐ฝ โ โข (๐ฝ โ Top โ ๐ โ ๐ฝ) | ||
Theorem | eltopss 22822 | A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
โข ๐ = โช ๐ฝ โ โข ((๐ฝ โ Top โง ๐ด โ ๐ฝ) โ ๐ด โ ๐) | ||
Theorem | riinopn 22823* | A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
โข ๐ = โช ๐ฝ โ โข ((๐ฝ โ Top โง ๐ด โ Fin โง โ๐ฅ โ ๐ด ๐ต โ ๐ฝ) โ (๐ โฉ โฉ ๐ฅ โ ๐ด ๐ต) โ ๐ฝ) | ||
Theorem | rintopn 22824 | A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
โข ๐ = โช ๐ฝ โ โข ((๐ฝ โ Top โง ๐ด โ ๐ฝ โง ๐ด โ Fin) โ (๐ โฉ โฉ ๐ด) โ ๐ฝ) | ||
Syntax | ctopon 22825 | Syntax for the function of topologies on sets. |
class TopOn | ||
Definition | df-topon 22826* | Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
โข TopOn = (๐ โ V โฆ {๐ โ Top โฃ ๐ = โช ๐}) | ||
Theorem | istopon 22827 | Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
โข (๐ฝ โ (TopOnโ๐ต) โ (๐ฝ โ Top โง ๐ต = โช ๐ฝ)) | ||
Theorem | topontop 22828 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข (๐ฝ โ (TopOnโ๐ต) โ ๐ฝ โ Top) | ||
Theorem | toponuni 22829 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข (๐ฝ โ (TopOnโ๐ต) โ ๐ต = โช ๐ฝ) | ||
Theorem | topontopi 22830 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข ๐ฝ โ (TopOnโ๐ต) โ โข ๐ฝ โ Top | ||
Theorem | toponunii 22831 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข ๐ฝ โ (TopOnโ๐ต) โ โข ๐ต = โช ๐ฝ | ||
Theorem | toptopon 22832 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข ๐ = โช ๐ฝ โ โข (๐ฝ โ Top โ ๐ฝ โ (TopOnโ๐)) | ||
Theorem | toptopon2 22833 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
โข (๐ฝ โ Top โ ๐ฝ โ (TopOnโโช ๐ฝ)) | ||
Theorem | topontopon 22834 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
โข (๐ฝ โ (TopOnโ๐) โ ๐ฝ โ (TopOnโโช ๐ฝ)) | ||
Theorem | funtopon 22835 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) |
โข Fun TopOn | ||
Theorem | toponrestid 22836 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
โข ๐ด โ (TopOnโ๐ต) โ โข ๐ด = (๐ด โพt ๐ต) | ||
Theorem | toponsspwpw 22837 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
โข (TopOnโ๐ด) โ ๐ซ ๐ซ ๐ด | ||
Theorem | dmtopon 22838 | The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
โข dom TopOn = V | ||
Theorem | fntopon 22839 | The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17565 for Moore collections. (Contributed by BJ, 29-Apr-2021.) |
โข TopOn Fn V | ||
Theorem | toprntopon 22840 | A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.) |
โข Top = โช ran TopOn | ||
Theorem | toponmax 22841 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข (๐ฝ โ (TopOnโ๐ต) โ ๐ต โ ๐ฝ) | ||
Theorem | toponss 22842 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
โข ((๐ฝ โ (TopOnโ๐) โง ๐ด โ ๐ฝ) โ ๐ด โ ๐) | ||
Theorem | toponcom 22843 | If ๐พ is a topology on the base set of topology ๐ฝ, then ๐ฝ is a topology on the base of ๐พ. (Contributed by Mario Carneiro, 22-Aug-2015.) |
โข ((๐ฝ โ Top โง ๐พ โ (TopOnโโช ๐ฝ)) โ ๐ฝ โ (TopOnโโช ๐พ)) | ||
Theorem | toponcomb 22844 | Biconditional form of toponcom 22843. (Contributed by BJ, 5-Dec-2021.) |
โข ((๐ฝ โ Top โง ๐พ โ Top) โ (๐ฝ โ (TopOnโโช ๐พ) โ ๐พ โ (TopOnโโช ๐ฝ))) | ||
Theorem | topgele 22845 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
โข (๐ฝ โ (TopOnโ๐) โ ({โ , ๐} โ ๐ฝ โง ๐ฝ โ ๐ซ ๐)) | ||
Theorem | topsn 22846 | The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4897). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
โข (๐ฝ โ (TopOnโ{๐ด}) โ ๐ฝ = ๐ซ {๐ด}) | ||
Syntax | ctps 22847 | Syntax for the class of topological spaces. |
class TopSp | ||
Definition | df-topsp 22848 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) |
โข TopSp = {๐ โฃ (TopOpenโ๐) โ (TopOnโ(Baseโ๐))} | ||
Theorem | istps 22849 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข ๐ด = (Baseโ๐พ) & โข ๐ฝ = (TopOpenโ๐พ) โ โข (๐พ โ TopSp โ ๐ฝ โ (TopOnโ๐ด)) | ||
Theorem | istps2 22850 | Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.) |
โข ๐ด = (Baseโ๐พ) & โข ๐ฝ = (TopOpenโ๐พ) โ โข (๐พ โ TopSp โ (๐ฝ โ Top โง ๐ด = โช ๐ฝ)) | ||
Theorem | tpsuni 22851 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
โข ๐ด = (Baseโ๐พ) & โข ๐ฝ = (TopOpenโ๐พ) โ โข (๐พ โ TopSp โ ๐ด = โช ๐ฝ) | ||
Theorem | tpstop 22852 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
โข ๐ฝ = (TopOpenโ๐พ) โ โข (๐พ โ TopSp โ ๐ฝ โ Top) | ||
Theorem | tpspropd 22853 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
โข (๐ โ (Baseโ๐พ) = (Baseโ๐ฟ)) & โข (๐ โ (TopOpenโ๐พ) = (TopOpenโ๐ฟ)) โ โข (๐ โ (๐พ โ TopSp โ ๐ฟ โ TopSp)) | ||
Theorem | tpsprop2d 22854 | A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข (๐ โ (Baseโ๐พ) = (Baseโ๐ฟ)) & โข (๐ โ (TopSetโ๐พ) = (TopSetโ๐ฟ)) โ โข (๐ โ (๐พ โ TopSp โ ๐ฟ โ TopSp)) | ||
Theorem | topontopn 22855 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข ๐ด = (Baseโ๐พ) & โข ๐ฝ = (TopSetโ๐พ) โ โข (๐ฝ โ (TopOnโ๐ด) โ ๐ฝ = (TopOpenโ๐พ)) | ||
Theorem | tsettps 22856 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
โข ๐ด = (Baseโ๐พ) & โข ๐ฝ = (TopSetโ๐พ) โ โข (๐ฝ โ (TopOnโ๐ด) โ ๐พ โ TopSp) | ||
Theorem | istpsi 22857 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
โข (Baseโ๐พ) = ๐ด & โข (TopOpenโ๐พ) = ๐ฝ & โข ๐ด = โช ๐ฝ & โข ๐ฝ โ Top โ โข ๐พ โ TopSp | ||
Theorem | eltpsg 22858 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.) |
โข ๐พ = {โจ(Baseโndx), ๐ดโฉ, โจ(TopSetโndx), ๐ฝโฉ} โ โข (๐ฝ โ (TopOnโ๐ด) โ ๐พ โ TopSp) | ||
Theorem | eltpsgOLD 22859 | Obsolete version of eltpsg 22858 as of 31-Oct-2024. Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
โข ๐พ = {โจ(Baseโndx), ๐ดโฉ, โจ(TopSetโndx), ๐ฝโฉ} โ โข (๐ฝ โ (TopOnโ๐ด) โ ๐พ โ TopSp) | ||
Theorem | eltpsi 22860 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
โข ๐พ = {โจ(Baseโndx), ๐ดโฉ, โจ(TopSetโndx), ๐ฝโฉ} & โข ๐ด = โช ๐ฝ & โข ๐ฝ โ Top โ โข ๐พ โ TopSp | ||
Syntax | ctb 22861 | Syntax for the class of topological bases. |
class TopBases | ||
Definition | df-bases 22862* | Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 22864). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.) |
โข TopBases = {๐ฅ โฃ โ๐ฆ โ ๐ฅ โ๐ง โ ๐ฅ (๐ฆ โฉ ๐ง) โ โช (๐ฅ โฉ ๐ซ (๐ฆ โฉ ๐ง))} | ||
Theorem | isbasisg 22863* | Express the predicate "the set ๐ต is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
โข (๐ต โ ๐ถ โ (๐ต โ TopBases โ โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต (๐ฅ โฉ ๐ฆ) โ โช (๐ต โฉ ๐ซ (๐ฅ โฉ ๐ฆ)))) | ||
Theorem | isbasis2g 22864* | Express the predicate "the set ๐ต is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
โข (๐ต โ ๐ถ โ (๐ต โ TopBases โ โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต โ๐ง โ (๐ฅ โฉ ๐ฆ)โ๐ค โ ๐ต (๐ง โ ๐ค โง ๐ค โ (๐ฅ โฉ ๐ฆ)))) | ||
Theorem | isbasis3g 22865* | Express the predicate "the set ๐ต is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
โข (๐ต โ ๐ถ โ (๐ต โ TopBases โ (โ๐ฅ โ ๐ต ๐ฅ โ โช ๐ต โง โ๐ฅ โ โช ๐ตโ๐ฆ โ ๐ต ๐ฅ โ ๐ฆ โง โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต โ๐ง โ (๐ฅ โฉ ๐ฆ)โ๐ค โ ๐ต (๐ง โ ๐ค โง ๐ค โ (๐ฅ โฉ ๐ฆ))))) | ||
Theorem | basis1 22866 | Property of a basis. (Contributed by NM, 16-Jul-2006.) |
โข ((๐ต โ TopBases โง ๐ถ โ ๐ต โง ๐ท โ ๐ต) โ (๐ถ โฉ ๐ท) โ โช (๐ต โฉ ๐ซ (๐ถ โฉ ๐ท))) | ||
Theorem | basis2 22867* | Property of a basis. (Contributed by NM, 17-Jul-2006.) |
โข (((๐ต โ TopBases โง ๐ถ โ ๐ต) โง (๐ท โ ๐ต โง ๐ด โ (๐ถ โฉ ๐ท))) โ โ๐ฅ โ ๐ต (๐ด โ ๐ฅ โง ๐ฅ โ (๐ถ โฉ ๐ท))) | ||
Theorem | fiinbas 22868* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
โข ((๐ต โ ๐ถ โง โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต (๐ฅ โฉ ๐ฆ) โ ๐ต) โ ๐ต โ TopBases) | ||
Theorem | basdif0 22869 | A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.) |
โข ((๐ต โ {โ }) โ TopBases โ ๐ต โ TopBases) | ||
Theorem | baspartn 22870* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
โข ((๐ โ ๐ โง โ๐ฅ โ ๐ โ๐ฆ โ ๐ (๐ฅ = ๐ฆ โจ (๐ฅ โฉ ๐ฆ) = โ )) โ ๐ โ TopBases) | ||
Theorem | tgval 22871* | The topology generated by a basis. See also tgval2 22872 and tgval3 22879. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
โข (๐ต โ ๐ โ (topGenโ๐ต) = {๐ฅ โฃ ๐ฅ โ โช (๐ต โฉ ๐ซ ๐ฅ)}) | ||
Theorem | tgval2 22872* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 22885) that (topGenโ๐ต) is indeed a topology (on โช ๐ต, see unitg 22883). See also tgval 22871 and tgval3 22879. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
โข (๐ต โ ๐ โ (topGenโ๐ต) = {๐ฅ โฃ (๐ฅ โ โช ๐ต โง โ๐ฆ โ ๐ฅ โ๐ง โ ๐ต (๐ฆ โ ๐ง โง ๐ง โ ๐ฅ))}) | ||
Theorem | eltg 22873 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
โข (๐ต โ ๐ โ (๐ด โ (topGenโ๐ต) โ ๐ด โ โช (๐ต โฉ ๐ซ ๐ด))) | ||
Theorem | eltg2 22874* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
โข (๐ต โ ๐ โ (๐ด โ (topGenโ๐ต) โ (๐ด โ โช ๐ต โง โ๐ฅ โ ๐ด โ๐ฆ โ ๐ต (๐ฅ โ ๐ฆ โง ๐ฆ โ ๐ด)))) | ||
Theorem | eltg2b 22875* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
โข (๐ต โ ๐ โ (๐ด โ (topGenโ๐ต) โ โ๐ฅ โ ๐ด โ๐ฆ โ ๐ต (๐ฅ โ ๐ฆ โง ๐ฆ โ ๐ด))) | ||
Theorem | eltg4i 22876 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
โข (๐ด โ (topGenโ๐ต) โ ๐ด = โช (๐ต โฉ ๐ซ ๐ด)) | ||
Theorem | eltg3i 22877 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
โข ((๐ต โ ๐ โง ๐ด โ ๐ต) โ โช ๐ด โ (topGenโ๐ต)) | ||
Theorem | eltg3 22878* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
โข (๐ต โ ๐ โ (๐ด โ (topGenโ๐ต) โ โ๐ฅ(๐ฅ โ ๐ต โง ๐ด = โช ๐ฅ))) | ||
Theorem | tgval3 22879* | Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 22871 and tgval2 22872. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) |
โข (๐ต โ ๐ โ (topGenโ๐ต) = {๐ฅ โฃ โ๐ฆ(๐ฆ โ ๐ต โง ๐ฅ = โช ๐ฆ)}) | ||
Theorem | tg1 22880 | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
โข (๐ด โ (topGenโ๐ต) โ ๐ด โ โช ๐ต) | ||
Theorem | tg2 22881* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
โข ((๐ด โ (topGenโ๐ต) โง ๐ถ โ ๐ด) โ โ๐ฅ โ ๐ต (๐ถ โ ๐ฅ โง ๐ฅ โ ๐ด)) | ||
Theorem | bastg 22882 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
โข (๐ต โ ๐ โ ๐ต โ (topGenโ๐ต)) | ||
Theorem | unitg 22883 | The topology generated by a basis ๐ต is a topology on โช ๐ต. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
โข (๐ต โ ๐ โ โช (topGenโ๐ต) = โช ๐ต) | ||
Theorem | tgss 22884 | Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
โข ((๐ถ โ ๐ โง ๐ต โ ๐ถ) โ (topGenโ๐ต) โ (topGenโ๐ถ)) | ||
Theorem | tgcl 22885 | Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.) |
โข (๐ต โ TopBases โ (topGenโ๐ต) โ Top) | ||
Theorem | tgclb 22886 | The property tgcl 22885 can be reversed: if the topology generated by ๐ต is actually a topology, then ๐ต must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
โข (๐ต โ TopBases โ (topGenโ๐ต) โ Top) | ||
Theorem | tgtopon 22887 | A basis generates a topology on โช ๐ต. (Contributed by Mario Carneiro, 14-Aug-2015.) |
โข (๐ต โ TopBases โ (topGenโ๐ต) โ (TopOnโโช ๐ต)) | ||
Theorem | topbas 22888 | A topology is its own basis. (Contributed by NM, 17-Jul-2006.) |
โข (๐ฝ โ Top โ ๐ฝ โ TopBases) | ||
Theorem | tgtop 22889 | A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
โข (๐ฝ โ Top โ (topGenโ๐ฝ) = ๐ฝ) | ||
Theorem | eltop 22890 | Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.) |
โข (๐ฝ โ Top โ (๐ด โ ๐ฝ โ ๐ด โ โช (๐ฝ โฉ ๐ซ ๐ด))) | ||
Theorem | eltop2 22891* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
โข (๐ฝ โ Top โ (๐ด โ ๐ฝ โ โ๐ฅ โ ๐ด โ๐ฆ โ ๐ฝ (๐ฅ โ ๐ฆ โง ๐ฆ โ ๐ด))) | ||
Theorem | eltop3 22892* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
โข (๐ฝ โ Top โ (๐ด โ ๐ฝ โ โ๐ฅ(๐ฅ โ ๐ฝ โง ๐ด = โช ๐ฅ))) | ||
Theorem | fibas 22893 | A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
โข (fiโ๐ด) โ TopBases | ||
Theorem | tgdom 22894 | A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
โข (๐ต โ ๐ โ (topGenโ๐ต) โผ ๐ซ ๐ต) | ||
Theorem | tgiun 22895* | The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
โข ((๐ต โ ๐ โง โ๐ฅ โ ๐ด ๐ถ โ ๐ต) โ โช ๐ฅ โ ๐ด ๐ถ โ (topGenโ๐ต)) | ||
Theorem | tgidm 22896 | The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
โข (๐ต โ ๐ โ (topGenโ(topGenโ๐ต)) = (topGenโ๐ต)) | ||
Theorem | bastop 22897 | Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
โข (๐ต โ TopBases โ (๐ต โ Top โ (topGenโ๐ต) = ๐ต)) | ||
Theorem | tgtop11 22898 | The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
โข ((๐ฝ โ Top โง ๐พ โ Top โง (topGenโ๐ฝ) = (topGenโ๐พ)) โ ๐ฝ = ๐พ) | ||
Theorem | 0top 22899 | The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
โข (๐ฝ โ Top โ (โช ๐ฝ = โ โ ๐ฝ = {โ })) | ||
Theorem | en1top 22900 | {โ } is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
โข (๐ฝ โ Top โ (๐ฝ โ 1o โ ๐ฝ = {โ })) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |