Home | Metamath
Proof Explorer Theorem List (p. 229 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | kqreglem2 22801* | If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) | ||
Theorem | kqnrmlem1 22802* | A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) | ||
Theorem | kqnrmlem2 22803* | If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) | ||
Theorem | kqtop 22804 | The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | ||
Theorem | kqt0 22805 | The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) | ||
Theorem | kqf 22806 | The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ KQ:Top⟶Kol2 | ||
Theorem | r0sep 22807* | The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) | ||
Theorem | nrmr0reg 22808 | A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg) | ||
Theorem | regr1 22809 | A regular space is R1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | ||
Theorem | kqreg 22810 | The Kolmogorov quotient of a regular space is regular. By regr1 22809 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) | ||
Theorem | kqnrm 22811 | The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) | ||
Syntax | chmeo 22812 | Extend class notation with the class of all homeomorphisms. |
class Homeo | ||
Syntax | chmph 22813 | Extend class notation with the relation "is homeomorphic to.". |
class ≃ | ||
Definition | df-hmeo 22814* | Function returning all the homeomorphisms from topology 𝑗 to topology 𝑘. (Contributed by FL, 14-Feb-2007.) |
⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | ||
Definition | df-hmph 22815 | Definition of the relation 𝑥 is homeomorphic to 𝑦. (Contributed by FL, 14-Feb-2007.) |
⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | ||
Theorem | hmeofn 22816 | The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ Homeo Fn (Top × Top) | ||
Theorem | hmeofval 22817* | The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} | ||
Theorem | ishmeo 22818 | The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Criterion of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | ||
Theorem | hmeocn 22819 | A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | hmeocnvcn 22820 | The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | ||
Theorem | hmeocnv 22821 | The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) | ||
Theorem | hmeof1o2 22822 | A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) | ||
Theorem | hmeof1o 22823 | A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) | ||
Theorem | hmeoima 22824 | The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) | ||
Theorem | hmeoopn 22825 | Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) | ||
Theorem | hmeocld 22826 | Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) | ||
Theorem | hmeocls 22827 | Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) | ||
Theorem | hmeontr 22828 | Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))) | ||
Theorem | hmeoimaf1o 22829* | The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐺 = (𝑥 ∈ 𝐽 ↦ (𝐹 “ 𝑥)) ⇒ ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽–1-1-onto→𝐾) | ||
Theorem | hmeores 22830 | The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌)))) | ||
Theorem | hmeoco 22831 | The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) | ||
Theorem | idhmeo 22832 | The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽)) | ||
Theorem | hmeocnvb 22833 | The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) | ||
Theorem | hmeoqtop 22834 | A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹)) | ||
Theorem | hmph 22835 | Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | ||
Theorem | hmphi 22836 | If there is a homeomorphism between spaces, then the spaces are homeomorphic. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽 ≃ 𝐾) | ||
Theorem | hmphtop 22837 | Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) | ||
Theorem | hmphtop1 22838 | The relation "being homeomorphic to" implies the operands are topologies. (Contributed by FL, 23-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → 𝐽 ∈ Top) | ||
Theorem | hmphtop2 22839 | The relation "being homeomorphic to" implies the operands are topologies. (Contributed by FL, 23-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → 𝐾 ∈ Top) | ||
Theorem | hmphref 22840 | "Is homeomorphic to" is reflexive. (Contributed by FL, 25-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐽 ∈ Top → 𝐽 ≃ 𝐽) | ||
Theorem | hmphsym 22841 | "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007.) (Proof shortened by Mario Carneiro, 30-May-2014.) |
⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) | ||
Theorem | hmphtr 22842 | "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿) → 𝐽 ≃ 𝐿) | ||
Theorem | hmpher 22843 | "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ ≃ Er Top | ||
Theorem | hmphen 22844 | Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) | ||
Theorem | hmphsymb 22845 | "Is homeomorphic to" is symmetric. (Contributed by FL, 22-Feb-2007.) |
⊢ (𝐽 ≃ 𝐾 ↔ 𝐾 ≃ 𝐽) | ||
Theorem | haushmphlem 22846* | Lemma for haushmph 22851 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) | ||
Theorem | cmphmph 22847 | Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) | ||
Theorem | connhmph 22848 | Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) | ||
Theorem | t0hmph 22849 | T0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2)) | ||
Theorem | t1hmph 22850 | T1 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Fre → 𝐾 ∈ Fre)) | ||
Theorem | haushmph 22851 | Hausdorff-ness is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Haus → 𝐾 ∈ Haus)) | ||
Theorem | reghmph 22852 | Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg)) | ||
Theorem | nrmhmph 22853 | Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) | ||
Theorem | hmph0 22854 | A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) | ||
Theorem | hmphdis 22855 | Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) | ||
Theorem | hmphindis 22856 | Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋}) | ||
Theorem | indishmph 22857 | Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐴 ≈ 𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) | ||
Theorem | hmphen2 22858 | Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) | ||
Theorem | cmphaushmeo 22859 | A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋–1-1-onto→𝑌)) | ||
Theorem | ordthmeolem 22860 | Lemma for ordthmeo 22861. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝑌 = dom 𝑆 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) | ||
Theorem | ordthmeo 22861 | An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝑌 = dom 𝑆 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) | ||
Theorem | txhmeo 22862* | Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐽Homeo𝐿)) & ⊢ (𝜑 → 𝐺 ∈ (𝐾Homeo𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀))) | ||
Theorem | txswaphmeolem 22863* | Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) | ||
Theorem | txswaphmeo 22864* | There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽))) | ||
Theorem | pt1hmeo 22865* | The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015.) (Proof shortened by AV, 18-Apr-2021.) |
⊢ 𝐾 = (∏t‘{〈𝐴, 𝐽〉}) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐽Homeo𝐾)) | ||
Theorem | ptuncnv 22866* | Exhibit the converse function of the map 𝐺 which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐾 & ⊢ 𝑌 = ∪ 𝐿 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐴)) & ⊢ 𝐿 = (∏t‘(𝐹 ↾ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶⟶Top) & ⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉)) | ||
Theorem | ptunhmeo 22867* | Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of (𝐴↑𝐵) · (𝐴↑𝐶) = 𝐴↑(𝐵 + 𝐶). (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐾 & ⊢ 𝑌 = ∪ 𝐿 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐴)) & ⊢ 𝐿 = (∏t‘(𝐹 ↾ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶⟶Top) & ⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽)) | ||
Theorem | xpstopnlem1 22868* | The function 𝐹 used in xpsval 17198 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉}))) | ||
Theorem | xpstps 22869 | A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp) | ||
Theorem | xpstopnlem2 22870* | Lemma for xpstopn 22871. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑆) & ⊢ 𝑂 = (TopOpen‘𝑇) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) | ||
Theorem | xpstopn 22871 | The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on {∅, 1o} to (𝑋 × 𝑌) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑆) & ⊢ 𝑂 = (TopOpen‘𝑇) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) | ||
Theorem | ptcmpfi 22872 | A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) | ||
Theorem | xkocnv 22873* | The inverse of the "currying" function 𝐹 is the uncurrying function. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ 𝐹 = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) & ⊢ (𝜑 → 𝐽 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐿 ∈ Top) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝐽 Cn (𝐿 ↑ko 𝐾)) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) | ||
Theorem | xkohmeo 22874* | The Exponential Law for topological spaces. The "currying" function 𝐹 is a homeomorphism on function spaces when 𝐽 and 𝐾 are exponentiable spaces (by xkococn 22719, it is sufficient to assume that 𝐽, 𝐾 are locally compact to ensure exponentiability). (Contributed by Mario Carneiro, 13-Apr-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ 𝐹 = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) & ⊢ (𝜑 → 𝐽 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐿 ∈ Top) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ↑ko (𝐽 ×t 𝐾))Homeo((𝐿 ↑ko 𝐾) ↑ko 𝐽))) | ||
Theorem | qtopf1 22875 | If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–1-1→𝑌) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹))) | ||
Theorem | qtophmeo 22876* | If two functions on a base topology 𝐽 make the same identifications in order to create quotient spaces 𝐽 qTop 𝐹 and 𝐽 qTop 𝐺, then not only are 𝐽 qTop 𝐹 and 𝐽 qTop 𝐺 homeomorphic, but there is a unique homeomorphism that makes the diagram commute. (Contributed by Mario Carneiro, 24-Mar-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐺‘𝑥) = (𝐺‘𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) | ||
Theorem | t0kq 22877* | A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) | ||
Theorem | kqhmph 22878 | A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) | ||
Theorem | ist1-5lem 22879 | Lemma for ist1-5 22881 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) & ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) & ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) ⇒ ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) | ||
Theorem | t1r0 22880 | A T1 space is R0. That is, the Kolmogorov quotient of a T1 space is also T1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre) | ||
Theorem | ist1-5 22881 | A topological space is T1 iff it is both T0 and R0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Fre)) | ||
Theorem | ishaus3 22882 | A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | ||
Theorem | nrmreg 22883 | A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 22808. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) | ||
Theorem | reghaus 22884 | A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
Theorem | nrmhaus 22885 | A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
Theorem | elmptrab 22886* | Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) & ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) | ||
Theorem | elmptrab2 22887* | Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) & ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V & ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) ⇒ ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) | ||
Theorem | isfbas 22888* | The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | ||
Theorem | fbasne0 22889 | There are no empty filter bases. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | ||
Theorem | 0nelfb 22890 | No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) | ||
Theorem | fbsspw 22891 | A filter base on a set is a subset of the power set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ⊆ 𝒫 𝐵) | ||
Theorem | fbelss 22892 | An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋 ∈ 𝐹) → 𝑋 ⊆ 𝐵) | ||
Theorem | fbdmn0 22893 | The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) | ||
Theorem | isfbas2 22894* | The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) | ||
Theorem | fbasssin 22895* | A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.) |
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | ||
Theorem | fbssfi 22896* | A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) | ||
Theorem | fbssint 22897* | A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | ||
Theorem | fbncp 22898 | A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) | ||
Theorem | fbun 22899* | A necessary and sufficient condition for the union of two filter bases to also be a filter base. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | ||
Theorem | fbfinnfr 22900 | No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∩ 𝐹 ≠ ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |