![]() |
Metamath
Proof Explorer Theorem List (p. 229 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw1lem1 22801* | Lemma 1 for pmatcollpw1 22803. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 ↑ 𝑋))) finSupp (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw1lem2 22802* | Lemma 2 for pmatcollpw1 22803: An entry of a polynomial matrix is the sum of the entries of the matrix consisting of the coefficients in the entries of the polynomial matrix multiplied with the corresponding power of the variable. (Contributed by AV, 25-Sep-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑀𝑏) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw1 22803* | Write a polynomial matrix as a matrix of sums of scaled monomials. (Contributed by AV, 29-Sep-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw2lem 22804* | Lemma for pmatcollpw2 22805. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw2 22805* | Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | monmatcollpw 22806 | The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 22797 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)) → (((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpwlem 22807 | Lemma for pmatcollpw 22808. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠 ‘𝑃)(𝑛 ↑ 𝑋)) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw 22808* | Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpwfi 22809* | Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 3-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw3lem 22810* | Lemma for pmatcollpw3 22811 and pmatcollpw3fi 22812: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m 𝐼)𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw3 22811* | Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑓 ∈ (𝐷 ↑m ℕ0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw3fi 22812* | Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw3fi1lem1 22813* | Lemma 1 for pmatcollpw3fi1 22815. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 )) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷 ↑m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝐺‘𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝐻‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw3fi1lem2 22814* | Lemma 2 for pmatcollpw3fi1 22815. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑓 ∈ (𝐷 ↑m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpw3fi1 22815* | Write a polynomial matrix (over a commutative ring) as a finite sum of (at least two) products of variable powers and constant matrices with scalar entries. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpwscmatlem1 22816 | Lemma 1 for pmatcollpwscmat 22818. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝐶) & ⊢ 𝑀 = (𝑄 ∗ 1 ) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpwscmatlem2 22817 | Lemma 2 for pmatcollpwscmat 22818. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝐶) & ⊢ 𝑀 = (𝑄 ∗ 1 ) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmatcollpwscmat 22818* | Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝐶) & ⊢ 𝑀 = (𝑄 ∗ 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ ((𝑈‘((coe1‘𝑄)‘𝑛)) ∗ 1 ))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The main result of this section is Theorem pmmpric 22850, which shows that the
ring of polynomial matrices and the ring of polynomials having matrices as
coefficients (called "polynomials over matrices" in the following) are
isomorphic:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cpm2mp 22819 | Extend class notation with the transformation of a polynomial matrix into a polynomial over matrices. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class pMatToMatPoly | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-pm2mp 22820* | Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpf1lem 22821* | Lemma for pm2mpf1 22826. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑈 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝐾) = (𝑈 decompPMat 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpval 22822* | Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpfval 22823* | A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpcl 22824 | The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ 𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpf 22825 | The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpf1 22826 | The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpcoe1 22827 | A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑇‘𝑀))‘𝐾) = (𝑀 decompPMat 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | idpm2idmp 22828 | The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐶)) = (1r‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mptcoe1matfsupp 22829* | The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1‘𝑂)‘𝑘)𝐽)) finSupp (0g‘𝑅)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mply1topmatcllem 22830* | Lemma for mply1topmatcl 22832. (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝐼((coe1‘𝑂)‘𝑘)𝐽) · (𝑘𝐸𝑌))) finSupp (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mply1topmatval 22831* | A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼‘𝑂)) = 𝑂) (see mp2pm2mp 22838). (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mply1topmatcl 22832* | A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mp2pm2mplem1 22833* | Lemma 1 for mp2pm2mp 22838. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mp2pm2mplem2 22834* | Lemma 2 for mp2pm2mp 22838. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mp2pm2mplem3 22835* | Lemma 3 for mp2pm2mp 22838. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mp2pm2mplem4 22836* | Lemma 4 for mp2pm2mp 22838. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = ((coe1‘𝑂)‘𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mp2pm2mplem5 22837* | Lemma 5 for mp2pm2mp 22838. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼‘𝑂) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mp2pm2mp 22838* | A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑇‘(𝐼‘𝑂)) = 𝑂) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpghmlem2 22839* | Lemma 2 for pm2mpghm 22843. (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpghmlem1 22840 | Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑀 decompPMat 𝐾) ∗ (𝐾 ↑ 𝑋)) ∈ 𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpfo 22841 | The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–onto→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpf1o 22842 | The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1-onto→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpghm 22843 | The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpgrpiso 22844 | The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpIso 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpmhmlem1 22845* | Lemma 1 for pm2mpmhm 22847. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpmhmlem2 22846* | Lemma 2 for pm2mpmhm 22847. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑇‘(𝑥(.r‘𝐶)𝑦)) = ((𝑇‘𝑥)(.r‘𝑄)(𝑇‘𝑦))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mpmhm 22847 | The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mprhm 22848 | The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingHom 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mprngiso 22849 | The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingIso 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pmmpric 22850 | The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ≃𝑟 𝑄) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | monmat2matmon 22851 | The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑀 ∗ (𝐿 ↑ 𝑋))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | pm2mp 22852* | The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾 ↑m ℕ0) ∧ 𝑀 finSupp (0g‘𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀‘𝑛) ∗ (𝑛 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients.". Based on the definition of the characteristic polynomial of a square matrix (df-chpmat 22854) the eigenvalues and corresponding eigenvectors can be defined. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The characteristic polynomial of a matrix 𝐴 is the determinant of the characteristic matrix of 𝐴: (𝑡𝐼 − 𝐴). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cchpmat 22853 | Extend class notation with the characteristic polynomial. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class CharPlyMat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-chpmat 22854* | Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "The characteristic polynomial of [an n x n matrix] A, denoted by pA(t), is the polynomial defined by pA ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in [Lang], p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial PM(t) to be the determinant det ( t In - M ) where In is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)( ·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat (Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chmatcl 22855 | Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐻 ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chmatval 22856 | The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ ∼ = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmatfval 22857* | Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐷 = (𝑁 maDet 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmatval 22858 | The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐷 = (𝑁 maDet 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmatply1 22859 | The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmatval2 22860* | The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐻 = (Base‘𝐺) & ⊢ 𝑍 = (ℤRHom‘𝑃) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑈 = (mulGrp‘𝑃) & ⊢ × = (.r‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmat0d 22861 | The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (∅ CharPlyMat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1‘𝑅))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmat1dlem 22862 | Lemma for chpmat1d 22863. (Contributed by AV, 7-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠 ‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpmat1d 22863 | The characteristic polynomial of a matrix with dimension 1. (Contributed by AV, 7-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpdmatlem0 22864 | Lemma 0 for chpdmat 22868. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpdmatlem1 22865 | Lemma 1 for chpdmat 22868. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpdmatlem2 22866 | Lemma 2 for chpdmat 22868. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇‘𝑀))𝑗) = (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpdmatlem3 22867 | Lemma 3 for chpdmat 22868. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇‘𝑀))𝐾) = (𝑋 − (𝑆‘(𝐾𝑀𝐾)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpdmat 22868* | The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋 − (𝑆‘(𝑘𝑀𝑘)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmat 22869* | The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘𝐸)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmat0 22870* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐼𝑀𝐼))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmatgsumbin 22871* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmatgsummon 22872* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑍 = (.g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chp0mat 22873 | The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 0 = (0g‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = ((♯‘𝑁) ↑ 𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpidmat 22874 | The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐼 = (1r‘𝐴) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ − = (-g‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chmaidscmat 22875 | The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 5-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐾 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑆 = (𝑁 ScMat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐶‘𝑀) · 1 ) ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this subsection the function 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) is discussed. This function is involved in the representation of the product of the characteristic matrix of a given matrix and its adjunct as an infinite sum, see cpmadugsum 22905. Therefore, this function is called "characteristic factor function" (in short "chfacf") in the following. It plays an important role in the proof of the Cayley-Hamilton theorem, see cayhamlem1 22893, cayhamlem3 22914 and cayhamlem4 22915. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04if 22876* | The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐴) & ⊢ ((𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐵) & ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐶) & ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑁) = 𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifa 22877* | The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifb 22878* | The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifc 22879* | The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifd 22880* | The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfisf 22881* | The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfisfcpmat 22882* | The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacffsupp 22883* | The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmulcl 22884* | Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmul0 22885* | A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmulfsupp 22886* | A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmulgsum 22887* | Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulcl 22888* | Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmul0 22889* | The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulfsupp 22890* | A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulgsum 22891* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulgsum2 22892* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayhamlem1 22893* | Lemma 1 for cayleyhamilton 22917. (Contributed by AV, 11-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this section, a direct algebraic proof for the Cayley-Hamilton theorem is
provided, according to Wikipedia ("Cayley-Hamilton theorem", 09-Nov-2019,
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem, section
"A direct algebraic proof" (this approach is also used for proving Lemma 1.9 in
[Hefferon] p. 427):
Using this notation, we have:
Following the proof shown in Wikipedia, the following steps are performed:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadurid 22894 | The right-hand fundamental relation of the adjugate (see madurid 22671) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ × = (.r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidgsum 22895* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidgsumm2pm 22896* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmatlem1 22897* | Lemma 1 for cpmidpmat 22900. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmatlem2 22898* | Lemma 2 for cpmidpmat 22900. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ (𝐵 ↑m ℕ0)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmatlem3 22899* | Lemma 3 for cpmidpmat 22900. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 finSupp (0g‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmat 22900* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑍 = (var1‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑄)) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |