| Metamath
Proof Explorer Theorem List (p. 229 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | toponuni 22801 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | ||
| Theorem | topontopi 22802 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | toponunii 22803 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐵 = ∪ 𝐽 | ||
| Theorem | toptopon 22804 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | ||
| Theorem | toptopon2 22805 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | topontopon 22806 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | funtopon 22807 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ Fun TopOn | ||
| Theorem | toponrestid 22808 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| ⊢ 𝐴 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐴 = (𝐴 ↾t 𝐵) | ||
| Theorem | toponsspwpw 22809 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 | ||
| Theorem | dmtopon 22810 | The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ dom TopOn = V | ||
| Theorem | fntopon 22811 | The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17552 for Moore collections. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ TopOn Fn V | ||
| Theorem | toprntopon 22812 | A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.) |
| ⊢ Top = ∪ ran TopOn | ||
| Theorem | toponmax 22813 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | ||
| Theorem | toponss 22814 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Theorem | toponcom 22815 | If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | ||
| Theorem | toponcomb 22816 | Biconditional form of toponcom 22815. (Contributed by BJ, 5-Dec-2021.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) | ||
| Theorem | topgele 22817 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | ||
| Theorem | topsn 22818 | The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4864). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) | ||
| Syntax | ctps 22819 | Syntax for the class of topological spaces. |
| class TopSp | ||
| Definition | df-topsp 22820 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) |
| ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | ||
| Theorem | istps 22821 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | ||
| Theorem | istps2 22822 | Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) | ||
| Theorem | tpsuni 22823 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) | ||
| Theorem | tpstop 22824 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) | ||
| Theorem | tpspropd 22825 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
| Theorem | tpsprop2d 22826 | A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
| Theorem | topontopn 22827 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) | ||
| Theorem | tsettps 22828 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | istpsi 22829 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = 𝐽 & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | eltpsg 22830 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | eltpsi 22831 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Syntax | ctb 22832 | Syntax for the class of topological bases. |
| class TopBases | ||
| Definition | df-bases 22833* | Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 22835). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.) |
| ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} | ||
| Theorem | isbasisg 22834* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis2g 22835* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis3g 22836* | Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ ∪ 𝐵∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) | ||
| Theorem | basis1 22837 | Property of a basis. (Contributed by NM, 16-Jul-2006.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | ||
| Theorem | basis2 22838* | Property of a basis. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) | ||
| Theorem | fiinbas 22839* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | ||
| Theorem | basdif0 22840 | A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases) | ||
| Theorem | baspartn 22841* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) | ||
| Theorem | tgval 22842* | The topology generated by a basis. See also tgval2 22843 and tgval3 22850. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | ||
| Theorem | tgval2 22843* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 22856) that (topGen‘𝐵) is indeed a topology (on ∪ 𝐵, see unitg 22854). See also tgval 22842 and tgval3 22850. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) | ||
| Theorem | eltg 22844 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | ||
| Theorem | eltg2 22845* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
| Theorem | eltg2b 22846* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
| Theorem | eltg4i 22847 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | ||
| Theorem | eltg3i 22848 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) | ||
| Theorem | eltg3 22849* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | ||
| Theorem | tgval3 22850* | Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 22842 and tgval2 22843. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)}) | ||
| Theorem | tg1 22851 | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | tg2 22852* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
| Theorem | bastg 22853 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | ||
| Theorem | unitg 22854 | The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) | ||
| Theorem | tgss 22855 | Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | ||
| Theorem | tgcl 22856 | Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | ||
| Theorem | tgclb 22857 | The property tgcl 22856 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | ||
| Theorem | tgtopon 22858 | A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) | ||
| Theorem | topbas 22859 | A topology is its own basis. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | ||
| Theorem | tgtop 22860 | A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | ||
| Theorem | eltop 22861 | Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ 𝐴 ⊆ ∪ (𝐽 ∩ 𝒫 𝐴))) | ||
| Theorem | eltop2 22862* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
| Theorem | eltop3 22863* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | ||
| Theorem | fibas 22864 | A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (fi‘𝐴) ∈ TopBases | ||
| Theorem | tgdom 22865 | A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) | ||
| Theorem | tgiun 22866* | The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) | ||
| Theorem | tgidm 22867 | The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵)) | ||
| Theorem | bastop 22868 | Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) | ||
| Theorem | tgtop11 22869 | The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) | ||
| Theorem | 0top 22870 | The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
| ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) | ||
| Theorem | en1top 22871 | {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | ||
| Theorem | en2top 22872 | If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) | ||
| Theorem | tgss3 22873 | A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) | ||
| Theorem | tgss2 22874* | A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
| Theorem | basgen 22875 | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | ||
| Theorem | basgen2 22876* | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) | ||
| Theorem | 2basgen 22877 | Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) | ||
| Theorem | tgfiss 22878 | If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) | ||
| Theorem | tgdif0 22879 | A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) | ||
| Theorem | bastop1 22880* | A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | ||
| Theorem | bastop2 22881* | A version of bastop1 22880 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
| ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | ||
| Theorem | distop 22882 | The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | ||
| Theorem | topnex 22883 | The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7735; an alternate proof uses indiscrete topologies (see indistop 22889) and the analogue of pwnex 7735 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7733). (Contributed by BJ, 2-May-2021.) |
| ⊢ Top ∉ V | ||
| Theorem | distopon 22884 | The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | ||
| Theorem | sn0topon 22885 | The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅} ∈ (TopOn‘∅) | ||
| Theorem | sn0top 22886 | The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅} ∈ Top | ||
| Theorem | indislem 22887 | A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | ||
| Theorem | indistopon 22888 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴)) | ||
| Theorem | indistop 22889 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ Top | ||
| Theorem | indisuni 22890 | The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | ||
| Theorem | fctop 22891* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | fctop2 22892* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 22891 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | cctop 22893* | The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | ppttop 22894* | The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | pptbas 22895* | The particular point topology is generated by a basis consisting of pairs {𝑥, 𝑃} for each 𝑥 ∈ 𝐴. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) | ||
| Theorem | epttop 22896* | The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) | ||
| Theorem | indistpsx 22897 | The indiscrete topology on a set 𝐴 expressed as a topological space, using explicit structure component references. Compare with indistps 22898 and indistps2 22899. The advantage of this version is that the actual function for the structure is evident, and df-ndx 17164 is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base 17180 and df-tset 17239 are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps 22898 instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈1, 𝐴〉, 〈9, {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps 22898 | The indiscrete topology on a set 𝐴 expressed as a topological space, using implicit structure indices. The advantage of this version over indistpsx 22897 is that it is independent of the indices of the component definitions df-base 17180 and df-tset 17239, and if they are changed in the future, this theorem will not be affected. The advantage over indistps2 22899 is that it is easy to eliminate the hypotheses with eqid 2729 and vtoclg 3520 to result in a closed theorem. Theorems indistpsALT 22900 and indistps2ALT 22901 show that the two forms can be derived from each other. (Contributed by FL, 19-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps2 22899 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22898. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22900 and indistps2ALT 22901 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistpsALT 22900 | The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 22898 from the direct component assignment version indistps2 22899. (Contributed by NM, 24-Oct-2012.) (Revised by AV, 31-Oct-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |