![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmp | Structured version Visualization version GIF version |
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscmp | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4578 | . . 3 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
2 | unieq 4880 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
3 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
5 | 4 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
6 | 4 | eqeq1d 2735 | . . . . 5 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
7 | 6 | rexbidv 3172 | . . . 4 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
8 | 5, 7 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐽 → ((∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
9 | 1, 8 | raleqbidv 3318 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
10 | df-cmp 22761 | . 2 ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
11 | 9, 10 | elrab2 3652 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∩ cin 3913 𝒫 cpw 4564 ∪ cuni 4869 Fincfn 8889 Topctop 22265 Compccmp 22760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-in 3921 df-ss 3931 df-pw 4566 df-uni 4870 df-cmp 22761 |
This theorem is referenced by: cmpcov 22763 cncmp 22766 fincmp 22767 cmptop 22769 cmpsub 22774 tgcmp 22775 uncmp 22777 sscmp 22779 cmpfi 22782 comppfsc 22906 txcmp 23017 alexsubb 23420 alexsubALT 23425 cmpcref 32495 onsucsuccmpi 34968 limsucncmpi 34970 pibp16 35934 heibor 36330 |
Copyright terms: Public domain | W3C validator |