MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmp Structured version   Visualization version   GIF version

Theorem iscmp 23326
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
iscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
iscmp (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable group:   𝑦,𝑧,𝐽
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem iscmp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4589 . . 3 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽)
2 unieq 4894 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
3 iscmp.1 . . . . . 6 𝑋 = 𝐽
42, 3eqtr4di 2788 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
54eqeq1d 2737 . . . 4 (𝑥 = 𝐽 → ( 𝑥 = 𝑦𝑋 = 𝑦))
64eqeq1d 2737 . . . . 5 (𝑥 = 𝐽 → ( 𝑥 = 𝑧𝑋 = 𝑧))
76rexbidv 3164 . . . 4 (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
85, 7imbi12d 344 . . 3 (𝑥 = 𝐽 → (( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
91, 8raleqbidv 3325 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
10 df-cmp 23325 . 2 Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
119, 10elrab2 3674 1 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  𝒫 cpw 4575   cuni 4883  Fincfn 8959  Topctop 22831  Compccmp 23324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-ss 3943  df-pw 4577  df-uni 4884  df-cmp 23325
This theorem is referenced by:  cmpcov  23327  cncmp  23330  fincmp  23331  cmptop  23333  cmpsub  23338  tgcmp  23339  uncmp  23341  sscmp  23343  cmpfi  23346  comppfsc  23470  txcmp  23581  alexsubb  23984  alexsubALT  23989  cmpcref  33881  onsucsuccmpi  36461  limsucncmpi  36463  pibp16  37431  heibor  37845
  Copyright terms: Public domain W3C validator