MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmp Structured version   Visualization version   GIF version

Theorem iscmp 22239
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
iscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
iscmp (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable group:   𝑦,𝑧,𝐽
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem iscmp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4515 . . 3 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽)
2 unieq 4816 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
3 iscmp.1 . . . . . 6 𝑋 = 𝐽
42, 3eqtr4di 2789 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
54eqeq1d 2738 . . . 4 (𝑥 = 𝐽 → ( 𝑥 = 𝑦𝑋 = 𝑦))
64eqeq1d 2738 . . . . 5 (𝑥 = 𝐽 → ( 𝑥 = 𝑧𝑋 = 𝑧))
76rexbidv 3206 . . . 4 (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
85, 7imbi12d 348 . . 3 (𝑥 = 𝐽 → (( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
91, 8raleqbidv 3303 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
10 df-cmp 22238 . 2 Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
119, 10elrab2 3594 1 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  cin 3852  𝒫 cpw 4499   cuni 4805  Fincfn 8604  Topctop 21744  Compccmp 22237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-in 3860  df-ss 3870  df-pw 4501  df-uni 4806  df-cmp 22238
This theorem is referenced by:  cmpcov  22240  cncmp  22243  fincmp  22244  cmptop  22246  cmpsub  22251  tgcmp  22252  uncmp  22254  sscmp  22256  cmpfi  22259  comppfsc  22383  txcmp  22494  alexsubb  22897  alexsubALT  22902  cmpcref  31468  onsucsuccmpi  34318  limsucncmpi  34320  pibp16  35270  heibor  35665
  Copyright terms: Public domain W3C validator