| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| iscmp | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4589 | . . 3 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
| 2 | unieq 4894 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
| 3 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 2, 3 | eqtr4di 2788 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
| 5 | 4 | eqeq1d 2737 | . . . 4 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
| 6 | 4 | eqeq1d 2737 | . . . . 5 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
| 7 | 6 | rexbidv 3164 | . . . 4 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
| 8 | 5, 7 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐽 → ((∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 9 | 1, 8 | raleqbidv 3325 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 10 | df-cmp 23325 | . 2 ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
| 11 | 9, 10 | elrab2 3674 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∩ cin 3925 𝒫 cpw 4575 ∪ cuni 4883 Fincfn 8959 Topctop 22831 Compccmp 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-ss 3943 df-pw 4577 df-uni 4884 df-cmp 23325 |
| This theorem is referenced by: cmpcov 23327 cncmp 23330 fincmp 23331 cmptop 23333 cmpsub 23338 tgcmp 23339 uncmp 23341 sscmp 23343 cmpfi 23346 comppfsc 23470 txcmp 23581 alexsubb 23984 alexsubALT 23989 cmpcref 33881 onsucsuccmpi 36461 limsucncmpi 36463 pibp16 37431 heibor 37845 |
| Copyright terms: Public domain | W3C validator |