| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| iscmp | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4577 | . . 3 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
| 2 | unieq 4882 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
| 3 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
| 5 | 4 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
| 6 | 4 | eqeq1d 2731 | . . . . 5 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
| 7 | 6 | rexbidv 3157 | . . . 4 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
| 8 | 5, 7 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐽 → ((∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 9 | 1, 8 | raleqbidv 3319 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 10 | df-cmp 23274 | . 2 ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
| 11 | 9, 10 | elrab2 3662 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 𝒫 cpw 4563 ∪ cuni 4871 Fincfn 8918 Topctop 22780 Compccmp 23273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-pw 4565 df-uni 4872 df-cmp 23274 |
| This theorem is referenced by: cmpcov 23276 cncmp 23279 fincmp 23280 cmptop 23282 cmpsub 23287 tgcmp 23288 uncmp 23290 sscmp 23292 cmpfi 23295 comppfsc 23419 txcmp 23530 alexsubb 23933 alexsubALT 23938 cmpcref 33840 onsucsuccmpi 36431 limsucncmpi 36433 pibp16 37401 heibor 37815 |
| Copyright terms: Public domain | W3C validator |