| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cntr | Structured version Visualization version GIF version | ||
| Description: Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| df-cntr | ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccntr 19334 | . 2 class Cntr | |
| 2 | vm | . . 3 setvar 𝑚 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑚 |
| 5 | cbs 17247 | . . . . 5 class Base | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (Base‘𝑚) |
| 7 | ccntz 19333 | . . . . 5 class Cntz | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class (Cntz‘𝑚) |
| 9 | 6, 8 | cfv 6561 | . . 3 class ((Cntz‘𝑚)‘(Base‘𝑚)) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) |
| 11 | 1, 10 | wceq 1540 | 1 wff Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cntrval 19337 |
| Copyright terms: Public domain | W3C validator |