![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cntr | Structured version Visualization version GIF version |
Description: Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
df-cntr | โข Cntr = (๐ โ V โฆ ((Cntzโ๐)โ(Baseโ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccntr 19228 | . 2 class Cntr | |
2 | vm | . . 3 setvar ๐ | |
3 | cvv 3473 | . . 3 class V | |
4 | 2 | cv 1539 | . . . . 5 class ๐ |
5 | cbs 17151 | . . . . 5 class Base | |
6 | 4, 5 | cfv 6543 | . . . 4 class (Baseโ๐) |
7 | ccntz 19227 | . . . . 5 class Cntz | |
8 | 4, 7 | cfv 6543 | . . . 4 class (Cntzโ๐) |
9 | 6, 8 | cfv 6543 | . . 3 class ((Cntzโ๐)โ(Baseโ๐)) |
10 | 2, 3, 9 | cmpt 5231 | . 2 class (๐ โ V โฆ ((Cntzโ๐)โ(Baseโ๐))) |
11 | 1, 10 | wceq 1540 | 1 wff Cntr = (๐ โ V โฆ ((Cntzโ๐)โ(Baseโ๐))) |
Colors of variables: wff setvar class |
This definition is referenced by: cntrval 19231 |
Copyright terms: Public domain | W3C validator |