MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cntr Structured version   Visualization version   GIF version

Definition df-cntr 18839
Description: Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
df-cntr Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))

Detailed syntax breakdown of Definition df-cntr
StepHypRef Expression
1 ccntr 18837 . 2 class Cntr
2 vm . . 3 setvar 𝑚
3 cvv 3422 . . 3 class V
42cv 1538 . . . . 5 class 𝑚
5 cbs 16840 . . . . 5 class Base
64, 5cfv 6418 . . . 4 class (Base‘𝑚)
7 ccntz 18836 . . . . 5 class Cntz
84, 7cfv 6418 . . . 4 class (Cntz‘𝑚)
96, 8cfv 6418 . . 3 class ((Cntz‘𝑚)‘(Base‘𝑚))
102, 3, 9cmpt 5153 . 2 class (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
111, 10wceq 1539 1 wff Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
Colors of variables: wff setvar class
This definition is referenced by:  cntrval  18840
  Copyright terms: Public domain W3C validator