MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cntr Structured version   Visualization version   GIF version

Definition df-cntr 19230
Description: Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
df-cntr Cntr = (๐‘š โˆˆ V โ†ฆ ((Cntzโ€˜๐‘š)โ€˜(Baseโ€˜๐‘š)))

Detailed syntax breakdown of Definition df-cntr
StepHypRef Expression
1 ccntr 19228 . 2 class Cntr
2 vm . . 3 setvar ๐‘š
3 cvv 3473 . . 3 class V
42cv 1539 . . . . 5 class ๐‘š
5 cbs 17151 . . . . 5 class Base
64, 5cfv 6543 . . . 4 class (Baseโ€˜๐‘š)
7 ccntz 19227 . . . . 5 class Cntz
84, 7cfv 6543 . . . 4 class (Cntzโ€˜๐‘š)
96, 8cfv 6543 . . 3 class ((Cntzโ€˜๐‘š)โ€˜(Baseโ€˜๐‘š))
102, 3, 9cmpt 5231 . 2 class (๐‘š โˆˆ V โ†ฆ ((Cntzโ€˜๐‘š)โ€˜(Baseโ€˜๐‘š)))
111, 10wceq 1540 1 wff Cntr = (๐‘š โˆˆ V โ†ฆ ((Cntzโ€˜๐‘š)โ€˜(Baseโ€˜๐‘š)))
Colors of variables: wff setvar class
This definition is referenced by:  cntrval  19231
  Copyright terms: Public domain W3C validator