| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version | ||
| Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntrval.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntrval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntrval | ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀)) | |
| 2 | cntrval.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2782 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍) |
| 4 | fveq2 6858 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 5 | cntrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | eqtr4di 2782 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 7 | 3, 6 | fveq12d 6865 | . . . 4 ⊢ (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍‘𝐵)) |
| 8 | df-cntr 19250 | . . . 4 ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | |
| 9 | fvex 6871 | . . . 4 ⊢ (𝑍‘𝐵) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6968 | . . 3 ⊢ (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍‘𝐵)) |
| 11 | 10 | eqcomd 2735 | . 2 ⊢ (𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
| 12 | 0fv 6902 | . . 3 ⊢ (∅‘𝐵) = ∅ | |
| 13 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
| 14 | 2, 13 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
| 15 | 14 | fveq1d 6860 | . . 3 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (∅‘𝐵)) |
| 16 | fvprc 6850 | . . 3 ⊢ (¬ 𝑀 ∈ V → (Cntr‘𝑀) = ∅) | |
| 17 | 12, 15, 16 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
| 18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ‘cfv 6511 Basecbs 17179 Cntzccntz 19247 Cntrccntr 19248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-cntr 19250 |
| This theorem is referenced by: elcntr 19262 cntrss 19263 cntri 19264 cntrsubgnsg 19275 cntrnsg 19276 oppgcntr 19297 cmnbascntr 19735 cntrcmnd 19772 cntrabl 19773 primefld 20714 rng2idl1cntr 21215 cntrcrng 33010 |
| Copyright terms: Public domain | W3C validator |