| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version | ||
| Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntrval.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntrval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntrval | ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀)) | |
| 2 | cntrval.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2789 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍) |
| 4 | fveq2 6881 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 5 | cntrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | eqtr4di 2789 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 7 | 3, 6 | fveq12d 6888 | . . . 4 ⊢ (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍‘𝐵)) |
| 8 | df-cntr 19306 | . . . 4 ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | |
| 9 | fvex 6894 | . . . 4 ⊢ (𝑍‘𝐵) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6991 | . . 3 ⊢ (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍‘𝐵)) |
| 11 | 10 | eqcomd 2742 | . 2 ⊢ (𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
| 12 | 0fv 6925 | . . 3 ⊢ (∅‘𝐵) = ∅ | |
| 13 | fvprc 6873 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
| 14 | 2, 13 | eqtrid 2783 | . . . 4 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
| 15 | 14 | fveq1d 6883 | . . 3 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (∅‘𝐵)) |
| 16 | fvprc 6873 | . . 3 ⊢ (¬ 𝑀 ∈ V → (Cntr‘𝑀) = ∅) | |
| 17 | 12, 15, 16 | 3eqtr4a 2797 | . 2 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
| 18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 Basecbs 17233 Cntzccntz 19303 Cntrccntr 19304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-cntr 19306 |
| This theorem is referenced by: elcntr 19318 cntrss 19319 cntri 19320 cntrsubgnsg 19331 cntrnsg 19332 oppgcntr 19353 cmnbascntr 19791 cntrcmnd 19828 cntrabl 19829 primefld 20770 rng2idl1cntr 21271 cntrcrng 33069 |
| Copyright terms: Public domain | W3C validator |