MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrval Structured version   Visualization version   GIF version

Theorem cntrval 19231
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntrval.b ๐ต = (Baseโ€˜๐‘€)
cntrval.z ๐‘ = (Cntzโ€˜๐‘€)
Assertion
Ref Expression
cntrval (๐‘โ€˜๐ต) = (Cntrโ€˜๐‘€)

Proof of Theorem cntrval
Dummy variable ๐‘š is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (๐‘š = ๐‘€ โ†’ (Cntzโ€˜๐‘š) = (Cntzโ€˜๐‘€))
2 cntrval.z . . . . . 6 ๐‘ = (Cntzโ€˜๐‘€)
31, 2eqtr4di 2789 . . . . 5 (๐‘š = ๐‘€ โ†’ (Cntzโ€˜๐‘š) = ๐‘)
4 fveq2 6891 . . . . . 6 (๐‘š = ๐‘€ โ†’ (Baseโ€˜๐‘š) = (Baseโ€˜๐‘€))
5 cntrval.b . . . . . 6 ๐ต = (Baseโ€˜๐‘€)
64, 5eqtr4di 2789 . . . . 5 (๐‘š = ๐‘€ โ†’ (Baseโ€˜๐‘š) = ๐ต)
73, 6fveq12d 6898 . . . 4 (๐‘š = ๐‘€ โ†’ ((Cntzโ€˜๐‘š)โ€˜(Baseโ€˜๐‘š)) = (๐‘โ€˜๐ต))
8 df-cntr 19230 . . . 4 Cntr = (๐‘š โˆˆ V โ†ฆ ((Cntzโ€˜๐‘š)โ€˜(Baseโ€˜๐‘š)))
9 fvex 6904 . . . 4 (๐‘โ€˜๐ต) โˆˆ V
107, 8, 9fvmpt 6998 . . 3 (๐‘€ โˆˆ V โ†’ (Cntrโ€˜๐‘€) = (๐‘โ€˜๐ต))
1110eqcomd 2737 . 2 (๐‘€ โˆˆ V โ†’ (๐‘โ€˜๐ต) = (Cntrโ€˜๐‘€))
12 0fv 6935 . . 3 (โˆ…โ€˜๐ต) = โˆ…
13 fvprc 6883 . . . . 5 (ยฌ ๐‘€ โˆˆ V โ†’ (Cntzโ€˜๐‘€) = โˆ…)
142, 13eqtrid 2783 . . . 4 (ยฌ ๐‘€ โˆˆ V โ†’ ๐‘ = โˆ…)
1514fveq1d 6893 . . 3 (ยฌ ๐‘€ โˆˆ V โ†’ (๐‘โ€˜๐ต) = (โˆ…โ€˜๐ต))
16 fvprc 6883 . . 3 (ยฌ ๐‘€ โˆˆ V โ†’ (Cntrโ€˜๐‘€) = โˆ…)
1712, 15, 163eqtr4a 2797 . 2 (ยฌ ๐‘€ โˆˆ V โ†’ (๐‘โ€˜๐ต) = (Cntrโ€˜๐‘€))
1811, 17pm2.61i 182 1 (๐‘โ€˜๐ต) = (Cntrโ€˜๐‘€)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   = wceq 1540   โˆˆ wcel 2105  Vcvv 3473  โˆ…c0 4322  โ€˜cfv 6543  Basecbs 17151  Cntzccntz 19227  Cntrccntr 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-cntr 19230
This theorem is referenced by:  elcntr  19242  cntrss  19243  cntri  19244  cntrsubgnsg  19255  cntrnsg  19256  oppgcntr  19280  cmnbascntr  19721  cntrcmnd  19758  cntrabl  19759  primefld  20652  rng2idl1cntr  21154  cntrcrng  32652
  Copyright terms: Public domain W3C validator