![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version |
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntrval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntrval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntrval | ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6896 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀)) | |
2 | cntrval.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | eqtr4di 2783 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍) |
4 | fveq2 6896 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
5 | cntrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | eqtr4di 2783 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
7 | 3, 6 | fveq12d 6903 | . . . 4 ⊢ (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍‘𝐵)) |
8 | df-cntr 19281 | . . . 4 ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | |
9 | fvex 6909 | . . . 4 ⊢ (𝑍‘𝐵) ∈ V | |
10 | 7, 8, 9 | fvmpt 7004 | . . 3 ⊢ (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍‘𝐵)) |
11 | 10 | eqcomd 2731 | . 2 ⊢ (𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
12 | 0fv 6940 | . . 3 ⊢ (∅‘𝐵) = ∅ | |
13 | fvprc 6888 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
14 | 2, 13 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
15 | 14 | fveq1d 6898 | . . 3 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (∅‘𝐵)) |
16 | fvprc 6888 | . . 3 ⊢ (¬ 𝑀 ∈ V → (Cntr‘𝑀) = ∅) | |
17 | 12, 15, 16 | 3eqtr4a 2791 | . 2 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4322 ‘cfv 6549 Basecbs 17183 Cntzccntz 19278 Cntrccntr 19279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-cntr 19281 |
This theorem is referenced by: elcntr 19293 cntrss 19294 cntri 19295 cntrsubgnsg 19306 cntrnsg 19307 oppgcntr 19331 cmnbascntr 19772 cntrcmnd 19809 cntrabl 19810 primefld 20705 rng2idl1cntr 21212 cntrcrng 32866 |
Copyright terms: Public domain | W3C validator |