MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrval Structured version   Visualization version   GIF version

Theorem cntrval 19233
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntrval.b 𝐵 = (Base‘𝑀)
cntrval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntrval (𝑍𝐵) = (Cntr‘𝑀)

Proof of Theorem cntrval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . 6 (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀))
2 cntrval.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2eqtr4di 2782 . . . . 5 (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍)
4 fveq2 6840 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 cntrval.b . . . . . 6 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2782 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6fveq12d 6847 . . . 4 (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍𝐵))
8 df-cntr 19232 . . . 4 Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
9 fvex 6853 . . . 4 (𝑍𝐵) ∈ V
107, 8, 9fvmpt 6950 . . 3 (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍𝐵))
1110eqcomd 2735 . 2 (𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
12 0fv 6884 . . 3 (∅‘𝐵) = ∅
13 fvprc 6832 . . . . 5 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
142, 13eqtrid 2776 . . . 4 𝑀 ∈ V → 𝑍 = ∅)
1514fveq1d 6842 . . 3 𝑀 ∈ V → (𝑍𝐵) = (∅‘𝐵))
16 fvprc 6832 . . 3 𝑀 ∈ V → (Cntr‘𝑀) = ∅)
1712, 15, 163eqtr4a 2790 . 2 𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
1811, 17pm2.61i 182 1 (𝑍𝐵) = (Cntr‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cfv 6499  Basecbs 17155  Cntzccntz 19229  Cntrccntr 19230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-cntr 19232
This theorem is referenced by:  elcntr  19244  cntrss  19245  cntri  19246  cntrsubgnsg  19257  cntrnsg  19258  oppgcntr  19279  cmnbascntr  19719  cntrcmnd  19756  cntrabl  19757  primefld  20725  rng2idl1cntr  21247  cntrcrng  33053
  Copyright terms: Public domain W3C validator