| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version | ||
| Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntrval.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntrval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntrval | ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6873 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀)) | |
| 2 | cntrval.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2787 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍) |
| 4 | fveq2 6873 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 5 | cntrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | eqtr4di 2787 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 7 | 3, 6 | fveq12d 6880 | . . . 4 ⊢ (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍‘𝐵)) |
| 8 | df-cntr 19288 | . . . 4 ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | |
| 9 | fvex 6886 | . . . 4 ⊢ (𝑍‘𝐵) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6983 | . . 3 ⊢ (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍‘𝐵)) |
| 11 | 10 | eqcomd 2740 | . 2 ⊢ (𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
| 12 | 0fv 6917 | . . 3 ⊢ (∅‘𝐵) = ∅ | |
| 13 | fvprc 6865 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
| 14 | 2, 13 | eqtrid 2781 | . . . 4 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
| 15 | 14 | fveq1d 6875 | . . 3 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (∅‘𝐵)) |
| 16 | fvprc 6865 | . . 3 ⊢ (¬ 𝑀 ∈ V → (Cntr‘𝑀) = ∅) | |
| 17 | 12, 15, 16 | 3eqtr4a 2795 | . 2 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
| 18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 ‘cfv 6528 Basecbs 17215 Cntzccntz 19285 Cntrccntr 19286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-iota 6481 df-fun 6530 df-fv 6536 df-cntr 19288 |
| This theorem is referenced by: elcntr 19300 cntrss 19301 cntri 19302 cntrsubgnsg 19313 cntrnsg 19314 oppgcntr 19335 cmnbascntr 19773 cntrcmnd 19810 cntrabl 19811 primefld 20752 rng2idl1cntr 21253 cntrcrng 33001 |
| Copyright terms: Public domain | W3C validator |