MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrval Structured version   Visualization version   GIF version

Theorem cntrval 19231
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntrval.b 𝐵 = (Base‘𝑀)
cntrval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntrval (𝑍𝐵) = (Cntr‘𝑀)

Proof of Theorem cntrval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀))
2 cntrval.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2eqtr4di 2784 . . . . 5 (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍)
4 fveq2 6822 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 cntrval.b . . . . . 6 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2784 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6fveq12d 6829 . . . 4 (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍𝐵))
8 df-cntr 19230 . . . 4 Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
9 fvex 6835 . . . 4 (𝑍𝐵) ∈ V
107, 8, 9fvmpt 6929 . . 3 (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍𝐵))
1110eqcomd 2737 . 2 (𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
12 0fv 6863 . . 3 (∅‘𝐵) = ∅
13 fvprc 6814 . . . . 5 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
142, 13eqtrid 2778 . . . 4 𝑀 ∈ V → 𝑍 = ∅)
1514fveq1d 6824 . . 3 𝑀 ∈ V → (𝑍𝐵) = (∅‘𝐵))
16 fvprc 6814 . . 3 𝑀 ∈ V → (Cntr‘𝑀) = ∅)
1712, 15, 163eqtr4a 2792 . 2 𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
1811, 17pm2.61i 182 1 (𝑍𝐵) = (Cntr‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cfv 6481  Basecbs 17120  Cntzccntz 19227  Cntrccntr 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-cntr 19230
This theorem is referenced by:  elcntr  19242  cntrss  19243  cntri  19244  cntrsubgnsg  19255  cntrnsg  19256  oppgcntr  19277  cmnbascntr  19717  cntrcmnd  19754  cntrabl  19755  primefld  20720  rng2idl1cntr  21242  cntrcrng  33050
  Copyright terms: Public domain W3C validator