Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version |
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntrval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntrval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntrval | ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀)) | |
2 | cntrval.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | eqtr4di 2796 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍) |
4 | fveq2 6774 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
5 | cntrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | eqtr4di 2796 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
7 | 3, 6 | fveq12d 6781 | . . . 4 ⊢ (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍‘𝐵)) |
8 | df-cntr 18924 | . . . 4 ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | |
9 | fvex 6787 | . . . 4 ⊢ (𝑍‘𝐵) ∈ V | |
10 | 7, 8, 9 | fvmpt 6875 | . . 3 ⊢ (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍‘𝐵)) |
11 | 10 | eqcomd 2744 | . 2 ⊢ (𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
12 | 0fv 6813 | . . 3 ⊢ (∅‘𝐵) = ∅ | |
13 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
14 | 2, 13 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
15 | 14 | fveq1d 6776 | . . 3 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (∅‘𝐵)) |
16 | fvprc 6766 | . . 3 ⊢ (¬ 𝑀 ∈ V → (Cntr‘𝑀) = ∅) | |
17 | 12, 15, 16 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ‘cfv 6433 Basecbs 16912 Cntzccntz 18921 Cntrccntr 18922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-cntr 18924 |
This theorem is referenced by: cntrss 18936 cntri 18937 cntrsubgnsg 18947 cntrnsg 18948 oppgcntr 18972 cntrcmnd 19443 cntrabl 19444 primefld 20073 cntrcrng 31322 |
Copyright terms: Public domain | W3C validator |