MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrval Structured version   Visualization version   GIF version

Theorem cntrval 19282
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntrval.b 𝐵 = (Base‘𝑀)
cntrval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntrval (𝑍𝐵) = (Cntr‘𝑀)

Proof of Theorem cntrval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . . . . 6 (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀))
2 cntrval.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2eqtr4di 2783 . . . . 5 (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍)
4 fveq2 6896 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 cntrval.b . . . . . 6 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2783 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6fveq12d 6903 . . . 4 (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍𝐵))
8 df-cntr 19281 . . . 4 Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
9 fvex 6909 . . . 4 (𝑍𝐵) ∈ V
107, 8, 9fvmpt 7004 . . 3 (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍𝐵))
1110eqcomd 2731 . 2 (𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
12 0fv 6940 . . 3 (∅‘𝐵) = ∅
13 fvprc 6888 . . . . 5 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
142, 13eqtrid 2777 . . . 4 𝑀 ∈ V → 𝑍 = ∅)
1514fveq1d 6898 . . 3 𝑀 ∈ V → (𝑍𝐵) = (∅‘𝐵))
16 fvprc 6888 . . 3 𝑀 ∈ V → (Cntr‘𝑀) = ∅)
1712, 15, 163eqtr4a 2791 . 2 𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
1811, 17pm2.61i 182 1 (𝑍𝐵) = (Cntr‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3461  c0 4322  cfv 6549  Basecbs 17183  Cntzccntz 19278  Cntrccntr 19279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-cntr 19281
This theorem is referenced by:  elcntr  19293  cntrss  19294  cntri  19295  cntrsubgnsg  19306  cntrnsg  19307  oppgcntr  19331  cmnbascntr  19772  cntrcmnd  19809  cntrabl  19810  primefld  20705  rng2idl1cntr  21212  cntrcrng  32866
  Copyright terms: Public domain W3C validator