MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrval Structured version   Visualization version   GIF version

Theorem cntrval 18925
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntrval.b 𝐵 = (Base‘𝑀)
cntrval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntrval (𝑍𝐵) = (Cntr‘𝑀)

Proof of Theorem cntrval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . 6 (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀))
2 cntrval.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2eqtr4di 2796 . . . . 5 (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍)
4 fveq2 6774 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 cntrval.b . . . . . 6 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2796 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6fveq12d 6781 . . . 4 (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍𝐵))
8 df-cntr 18924 . . . 4 Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
9 fvex 6787 . . . 4 (𝑍𝐵) ∈ V
107, 8, 9fvmpt 6875 . . 3 (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍𝐵))
1110eqcomd 2744 . 2 (𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
12 0fv 6813 . . 3 (∅‘𝐵) = ∅
13 fvprc 6766 . . . . 5 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
142, 13eqtrid 2790 . . . 4 𝑀 ∈ V → 𝑍 = ∅)
1514fveq1d 6776 . . 3 𝑀 ∈ V → (𝑍𝐵) = (∅‘𝐵))
16 fvprc 6766 . . 3 𝑀 ∈ V → (Cntr‘𝑀) = ∅)
1712, 15, 163eqtr4a 2804 . 2 𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
1811, 17pm2.61i 182 1 (𝑍𝐵) = (Cntr‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433  Basecbs 16912  Cntzccntz 18921  Cntrccntr 18922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-cntr 18924
This theorem is referenced by:  cntrss  18936  cntri  18937  cntrsubgnsg  18947  cntrnsg  18948  oppgcntr  18972  cntrcmnd  19443  cntrabl  19444  primefld  20073  cntrcrng  31322
  Copyright terms: Public domain W3C validator