![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version |
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntrval.b | โข ๐ต = (Baseโ๐) |
cntrval.z | โข ๐ = (Cntzโ๐) |
Ref | Expression |
---|---|
cntrval | โข (๐โ๐ต) = (Cntrโ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . 6 โข (๐ = ๐ โ (Cntzโ๐) = (Cntzโ๐)) | |
2 | cntrval.z | . . . . . 6 โข ๐ = (Cntzโ๐) | |
3 | 1, 2 | eqtr4di 2789 | . . . . 5 โข (๐ = ๐ โ (Cntzโ๐) = ๐) |
4 | fveq2 6891 | . . . . . 6 โข (๐ = ๐ โ (Baseโ๐) = (Baseโ๐)) | |
5 | cntrval.b | . . . . . 6 โข ๐ต = (Baseโ๐) | |
6 | 4, 5 | eqtr4di 2789 | . . . . 5 โข (๐ = ๐ โ (Baseโ๐) = ๐ต) |
7 | 3, 6 | fveq12d 6898 | . . . 4 โข (๐ = ๐ โ ((Cntzโ๐)โ(Baseโ๐)) = (๐โ๐ต)) |
8 | df-cntr 19230 | . . . 4 โข Cntr = (๐ โ V โฆ ((Cntzโ๐)โ(Baseโ๐))) | |
9 | fvex 6904 | . . . 4 โข (๐โ๐ต) โ V | |
10 | 7, 8, 9 | fvmpt 6998 | . . 3 โข (๐ โ V โ (Cntrโ๐) = (๐โ๐ต)) |
11 | 10 | eqcomd 2737 | . 2 โข (๐ โ V โ (๐โ๐ต) = (Cntrโ๐)) |
12 | 0fv 6935 | . . 3 โข (โ โ๐ต) = โ | |
13 | fvprc 6883 | . . . . 5 โข (ยฌ ๐ โ V โ (Cntzโ๐) = โ ) | |
14 | 2, 13 | eqtrid 2783 | . . . 4 โข (ยฌ ๐ โ V โ ๐ = โ ) |
15 | 14 | fveq1d 6893 | . . 3 โข (ยฌ ๐ โ V โ (๐โ๐ต) = (โ โ๐ต)) |
16 | fvprc 6883 | . . 3 โข (ยฌ ๐ โ V โ (Cntrโ๐) = โ ) | |
17 | 12, 15, 16 | 3eqtr4a 2797 | . 2 โข (ยฌ ๐ โ V โ (๐โ๐ต) = (Cntrโ๐)) |
18 | 11, 17 | pm2.61i 182 | 1 โข (๐โ๐ต) = (Cntrโ๐) |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 = wceq 1540 โ wcel 2105 Vcvv 3473 โ c0 4322 โcfv 6543 Basecbs 17151 Cntzccntz 19227 Cntrccntr 19228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-cntr 19230 |
This theorem is referenced by: elcntr 19242 cntrss 19243 cntri 19244 cntrsubgnsg 19255 cntrnsg 19256 oppgcntr 19280 cmnbascntr 19721 cntrcmnd 19758 cntrabl 19759 primefld 20652 rng2idl1cntr 21154 cntrcrng 32652 |
Copyright terms: Public domain | W3C validator |