Detailed syntax breakdown of Definition df-cntz
Step | Hyp | Ref
| Expression |
1 | | ccntz 18709 |
. 2
class
Cntz |
2 | | vm |
. . 3
setvar 𝑚 |
3 | | cvv 3408 |
. . 3
class
V |
4 | | vs |
. . . 4
setvar 𝑠 |
5 | 2 | cv 1542 |
. . . . . 6
class 𝑚 |
6 | | cbs 16760 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6380 |
. . . . 5
class
(Base‘𝑚) |
8 | 7 | cpw 4513 |
. . . 4
class 𝒫
(Base‘𝑚) |
9 | | vx |
. . . . . . . . 9
setvar 𝑥 |
10 | 9 | cv 1542 |
. . . . . . . 8
class 𝑥 |
11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
12 | 11 | cv 1542 |
. . . . . . . 8
class 𝑦 |
13 | | cplusg 16802 |
. . . . . . . . 9
class
+g |
14 | 5, 13 | cfv 6380 |
. . . . . . . 8
class
(+g‘𝑚) |
15 | 10, 12, 14 | co 7213 |
. . . . . . 7
class (𝑥(+g‘𝑚)𝑦) |
16 | 12, 10, 14 | co 7213 |
. . . . . . 7
class (𝑦(+g‘𝑚)𝑥) |
17 | 15, 16 | wceq 1543 |
. . . . . 6
wff (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) |
18 | 4 | cv 1542 |
. . . . . 6
class 𝑠 |
19 | 17, 11, 18 | wral 3061 |
. . . . 5
wff
∀𝑦 ∈
𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) |
20 | 19, 9, 7 | crab 3065 |
. . . 4
class {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)} |
21 | 4, 8, 20 | cmpt 5135 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘𝑚) ↦
{𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)}) |
22 | 2, 3, 21 | cmpt 5135 |
. 2
class (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑚) ↦
{𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) |
23 | 1, 22 | wceq 1543 |
1
wff Cntz =
(𝑚 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑚) ↦
{𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) |