Detailed syntax breakdown of Definition df-cph
| Step | Hyp | Ref
| Expression |
| 1 | | ccph 25200 |
. 2
class
ℂPreHil |
| 2 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 4 | | ccnfld 21364 |
. . . . . . . 8
class
ℂfld |
| 5 | | vk |
. . . . . . . . 9
setvar 𝑘 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑘 |
| 7 | | cress 17274 |
. . . . . . . 8
class
↾s |
| 8 | 4, 6, 7 | co 7431 |
. . . . . . 7
class
(ℂfld ↾s 𝑘) |
| 9 | 3, 8 | wceq 1540 |
. . . . . 6
wff 𝑓 = (ℂfld
↾s 𝑘) |
| 10 | | csqrt 15272 |
. . . . . . . 8
class
√ |
| 11 | | cc0 11155 |
. . . . . . . . . 10
class
0 |
| 12 | | cpnf 11292 |
. . . . . . . . . 10
class
+∞ |
| 13 | | cico 13389 |
. . . . . . . . . 10
class
[,) |
| 14 | 11, 12, 13 | co 7431 |
. . . . . . . . 9
class
(0[,)+∞) |
| 15 | 6, 14 | cin 3950 |
. . . . . . . 8
class (𝑘 ∩
(0[,)+∞)) |
| 16 | 10, 15 | cima 5688 |
. . . . . . 7
class (√
“ (𝑘 ∩
(0[,)+∞))) |
| 17 | 16, 6 | wss 3951 |
. . . . . 6
wff (√
“ (𝑘 ∩
(0[,)+∞))) ⊆ 𝑘 |
| 18 | | vw |
. . . . . . . . 9
setvar 𝑤 |
| 19 | 18 | cv 1539 |
. . . . . . . 8
class 𝑤 |
| 20 | | cnm 24589 |
. . . . . . . 8
class
norm |
| 21 | 19, 20 | cfv 6561 |
. . . . . . 7
class
(norm‘𝑤) |
| 22 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 23 | | cbs 17247 |
. . . . . . . . 9
class
Base |
| 24 | 19, 23 | cfv 6561 |
. . . . . . . 8
class
(Base‘𝑤) |
| 25 | 22 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 26 | | cip 17302 |
. . . . . . . . . . 11
class
·𝑖 |
| 27 | 19, 26 | cfv 6561 |
. . . . . . . . . 10
class
(·𝑖‘𝑤) |
| 28 | 25, 25, 27 | co 7431 |
. . . . . . . . 9
class (𝑥(·𝑖‘𝑤)𝑥) |
| 29 | 28, 10 | cfv 6561 |
. . . . . . . 8
class
(√‘(𝑥(·𝑖‘𝑤)𝑥)) |
| 30 | 22, 24, 29 | cmpt 5225 |
. . . . . . 7
class (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) |
| 31 | 21, 30 | wceq 1540 |
. . . . . 6
wff
(norm‘𝑤) =
(𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) |
| 32 | 9, 17, 31 | w3a 1087 |
. . . . 5
wff (𝑓 = (ℂfld
↾s 𝑘)
∧ (√ “ (𝑘
∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
| 33 | 3, 23 | cfv 6561 |
. . . . 5
class
(Base‘𝑓) |
| 34 | 32, 5, 33 | wsbc 3788 |
. . . 4
wff
[(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
| 35 | | csca 17300 |
. . . . 5
class
Scalar |
| 36 | 19, 35 | cfv 6561 |
. . . 4
class
(Scalar‘𝑤) |
| 37 | 34, 2, 36 | wsbc 3788 |
. . 3
wff
[(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
| 38 | | cphl 21642 |
. . . 4
class
PreHil |
| 39 | | cnlm 24593 |
. . . 4
class
NrmMod |
| 40 | 38, 39 | cin 3950 |
. . 3
class (PreHil
∩ NrmMod) |
| 41 | 37, 18, 40 | crab 3436 |
. 2
class {𝑤 ∈ (PreHil ∩ NrmMod)
∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |
| 42 | 1, 41 | wceq 1540 |
1
wff
ℂPreHil = {𝑤
∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |