Detailed syntax breakdown of Definition df-cph
Step | Hyp | Ref
| Expression |
1 | | ccph 24339 |
. 2
class
ℂPreHil |
2 | | vf |
. . . . . . . 8
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑓 |
4 | | ccnfld 20606 |
. . . . . . . 8
class
ℂfld |
5 | | vk |
. . . . . . . . 9
setvar 𝑘 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑘 |
7 | | cress 16950 |
. . . . . . . 8
class
↾s |
8 | 4, 6, 7 | co 7284 |
. . . . . . 7
class
(ℂfld ↾s 𝑘) |
9 | 3, 8 | wceq 1539 |
. . . . . 6
wff 𝑓 = (ℂfld
↾s 𝑘) |
10 | | csqrt 14953 |
. . . . . . . 8
class
√ |
11 | | cc0 10880 |
. . . . . . . . . 10
class
0 |
12 | | cpnf 11015 |
. . . . . . . . . 10
class
+∞ |
13 | | cico 13090 |
. . . . . . . . . 10
class
[,) |
14 | 11, 12, 13 | co 7284 |
. . . . . . . . 9
class
(0[,)+∞) |
15 | 6, 14 | cin 3887 |
. . . . . . . 8
class (𝑘 ∩
(0[,)+∞)) |
16 | 10, 15 | cima 5593 |
. . . . . . 7
class (√
“ (𝑘 ∩
(0[,)+∞))) |
17 | 16, 6 | wss 3888 |
. . . . . 6
wff (√
“ (𝑘 ∩
(0[,)+∞))) ⊆ 𝑘 |
18 | | vw |
. . . . . . . . 9
setvar 𝑤 |
19 | 18 | cv 1538 |
. . . . . . . 8
class 𝑤 |
20 | | cnm 23741 |
. . . . . . . 8
class
norm |
21 | 19, 20 | cfv 6437 |
. . . . . . 7
class
(norm‘𝑤) |
22 | | vx |
. . . . . . . 8
setvar 𝑥 |
23 | | cbs 16921 |
. . . . . . . . 9
class
Base |
24 | 19, 23 | cfv 6437 |
. . . . . . . 8
class
(Base‘𝑤) |
25 | 22 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
26 | | cip 16976 |
. . . . . . . . . . 11
class
·𝑖 |
27 | 19, 26 | cfv 6437 |
. . . . . . . . . 10
class
(·𝑖‘𝑤) |
28 | 25, 25, 27 | co 7284 |
. . . . . . . . 9
class (𝑥(·𝑖‘𝑤)𝑥) |
29 | 28, 10 | cfv 6437 |
. . . . . . . 8
class
(√‘(𝑥(·𝑖‘𝑤)𝑥)) |
30 | 22, 24, 29 | cmpt 5158 |
. . . . . . 7
class (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) |
31 | 21, 30 | wceq 1539 |
. . . . . 6
wff
(norm‘𝑤) =
(𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) |
32 | 9, 17, 31 | w3a 1086 |
. . . . 5
wff (𝑓 = (ℂfld
↾s 𝑘)
∧ (√ “ (𝑘
∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
33 | 3, 23 | cfv 6437 |
. . . . 5
class
(Base‘𝑓) |
34 | 32, 5, 33 | wsbc 3717 |
. . . 4
wff
[(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
35 | | csca 16974 |
. . . . 5
class
Scalar |
36 | 19, 35 | cfv 6437 |
. . . 4
class
(Scalar‘𝑤) |
37 | 34, 2, 36 | wsbc 3717 |
. . 3
wff
[(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
38 | | cphl 20838 |
. . . 4
class
PreHil |
39 | | cnlm 23745 |
. . . 4
class
NrmMod |
40 | 38, 39 | cin 3887 |
. . 3
class (PreHil
∩ NrmMod) |
41 | 37, 18, 40 | crab 3069 |
. 2
class {𝑤 ∈ (PreHil ∩ NrmMod)
∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |
42 | 1, 41 | wceq 1539 |
1
wff
ℂPreHil = {𝑤
∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |