MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cph Structured version   Visualization version   GIF version

Definition df-cph 24685
Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of β„‚fld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015.)
Assertion
Ref Expression
df-cph β„‚PreHil = {𝑀 ∈ (PreHil ∩ NrmMod) ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))}
Distinct variable group:   𝑓,π‘˜,𝑀,π‘₯

Detailed syntax breakdown of Definition df-cph
StepHypRef Expression
1 ccph 24683 . 2 class β„‚PreHil
2 vf . . . . . . . 8 setvar 𝑓
32cv 1541 . . . . . . 7 class 𝑓
4 ccnfld 20944 . . . . . . . 8 class β„‚fld
5 vk . . . . . . . . 9 setvar π‘˜
65cv 1541 . . . . . . . 8 class π‘˜
7 cress 17173 . . . . . . . 8 class β†Ύs
84, 6, 7co 7409 . . . . . . 7 class (β„‚fld β†Ύs π‘˜)
93, 8wceq 1542 . . . . . 6 wff 𝑓 = (β„‚fld β†Ύs π‘˜)
10 csqrt 15180 . . . . . . . 8 class √
11 cc0 11110 . . . . . . . . . 10 class 0
12 cpnf 11245 . . . . . . . . . 10 class +∞
13 cico 13326 . . . . . . . . . 10 class [,)
1411, 12, 13co 7409 . . . . . . . . 9 class (0[,)+∞)
156, 14cin 3948 . . . . . . . 8 class (π‘˜ ∩ (0[,)+∞))
1610, 15cima 5680 . . . . . . 7 class (√ β€œ (π‘˜ ∩ (0[,)+∞)))
1716, 6wss 3949 . . . . . 6 wff (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜
18 vw . . . . . . . . 9 setvar 𝑀
1918cv 1541 . . . . . . . 8 class 𝑀
20 cnm 24085 . . . . . . . 8 class norm
2119, 20cfv 6544 . . . . . . 7 class (normβ€˜π‘€)
22 vx . . . . . . . 8 setvar π‘₯
23 cbs 17144 . . . . . . . . 9 class Base
2419, 23cfv 6544 . . . . . . . 8 class (Baseβ€˜π‘€)
2522cv 1541 . . . . . . . . . 10 class π‘₯
26 cip 17202 . . . . . . . . . . 11 class ·𝑖
2719, 26cfv 6544 . . . . . . . . . 10 class (Β·π‘–β€˜π‘€)
2825, 25, 27co 7409 . . . . . . . . 9 class (π‘₯(Β·π‘–β€˜π‘€)π‘₯)
2928, 10cfv 6544 . . . . . . . 8 class (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))
3022, 24, 29cmpt 5232 . . . . . . 7 class (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))
3121, 30wceq 1542 . . . . . 6 wff (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))
329, 17, 31w3a 1088 . . . . 5 wff (𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))
333, 23cfv 6544 . . . . 5 class (Baseβ€˜π‘“)
3432, 5, 33wsbc 3778 . . . 4 wff [(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))
35 csca 17200 . . . . 5 class Scalar
3619, 35cfv 6544 . . . 4 class (Scalarβ€˜π‘€)
3734, 2, 36wsbc 3778 . . 3 wff [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))
38 cphl 21177 . . . 4 class PreHil
39 cnlm 24089 . . . 4 class NrmMod
4038, 39cin 3948 . . 3 class (PreHil ∩ NrmMod)
4137, 18, 40crab 3433 . 2 class {𝑀 ∈ (PreHil ∩ NrmMod) ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))}
421, 41wceq 1542 1 wff β„‚PreHil = {𝑀 ∈ (PreHil ∩ NrmMod) ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))}
Colors of variables: wff setvar class
This definition is referenced by:  iscph  24687
  Copyright terms: Public domain W3C validator