Step | Hyp | Ref
| Expression |
1 | | ccph 24683 |
. 2
class
βPreHil |
2 | | vf |
. . . . . . . 8
setvar π |
3 | 2 | cv 1541 |
. . . . . . 7
class π |
4 | | ccnfld 20944 |
. . . . . . . 8
class
βfld |
5 | | vk |
. . . . . . . . 9
setvar π |
6 | 5 | cv 1541 |
. . . . . . . 8
class π |
7 | | cress 17173 |
. . . . . . . 8
class
βΎs |
8 | 4, 6, 7 | co 7409 |
. . . . . . 7
class
(βfld βΎs π) |
9 | 3, 8 | wceq 1542 |
. . . . . 6
wff π = (βfld
βΎs π) |
10 | | csqrt 15180 |
. . . . . . . 8
class
β |
11 | | cc0 11110 |
. . . . . . . . . 10
class
0 |
12 | | cpnf 11245 |
. . . . . . . . . 10
class
+β |
13 | | cico 13326 |
. . . . . . . . . 10
class
[,) |
14 | 11, 12, 13 | co 7409 |
. . . . . . . . 9
class
(0[,)+β) |
15 | 6, 14 | cin 3948 |
. . . . . . . 8
class (π β©
(0[,)+β)) |
16 | 10, 15 | cima 5680 |
. . . . . . 7
class (β
β (π β©
(0[,)+β))) |
17 | 16, 6 | wss 3949 |
. . . . . 6
wff (β
β (π β©
(0[,)+β))) β π |
18 | | vw |
. . . . . . . . 9
setvar π€ |
19 | 18 | cv 1541 |
. . . . . . . 8
class π€ |
20 | | cnm 24085 |
. . . . . . . 8
class
norm |
21 | 19, 20 | cfv 6544 |
. . . . . . 7
class
(normβπ€) |
22 | | vx |
. . . . . . . 8
setvar π₯ |
23 | | cbs 17144 |
. . . . . . . . 9
class
Base |
24 | 19, 23 | cfv 6544 |
. . . . . . . 8
class
(Baseβπ€) |
25 | 22 | cv 1541 |
. . . . . . . . . 10
class π₯ |
26 | | cip 17202 |
. . . . . . . . . . 11
class
Β·π |
27 | 19, 26 | cfv 6544 |
. . . . . . . . . 10
class
(Β·πβπ€) |
28 | 25, 25, 27 | co 7409 |
. . . . . . . . 9
class (π₯(Β·πβπ€)π₯) |
29 | 28, 10 | cfv 6544 |
. . . . . . . 8
class
(ββ(π₯(Β·πβπ€)π₯)) |
30 | 22, 24, 29 | cmpt 5232 |
. . . . . . 7
class (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))) |
31 | 21, 30 | wceq 1542 |
. . . . . 6
wff
(normβπ€) =
(π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))) |
32 | 9, 17, 31 | w3a 1088 |
. . . . 5
wff (π = (βfld
βΎs π)
β§ (β β (π
β© (0[,)+β))) β π β§ (normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) |
33 | 3, 23 | cfv 6544 |
. . . . 5
class
(Baseβπ) |
34 | 32, 5, 33 | wsbc 3778 |
. . . 4
wff
[(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) |
35 | | csca 17200 |
. . . . 5
class
Scalar |
36 | 19, 35 | cfv 6544 |
. . . 4
class
(Scalarβπ€) |
37 | 34, 2, 36 | wsbc 3778 |
. . 3
wff
[(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) |
38 | | cphl 21177 |
. . . 4
class
PreHil |
39 | | cnlm 24089 |
. . . 4
class
NrmMod |
40 | 38, 39 | cin 3948 |
. . 3
class (PreHil
β© NrmMod) |
41 | 37, 18, 40 | crab 3433 |
. 2
class {π€ β (PreHil β© NrmMod)
β£ [(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))))} |
42 | 1, 41 | wceq 1542 |
1
wff
βPreHil = {π€
β (PreHil β© NrmMod) β£ [(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))))} |