MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscph Structured version   Visualization version   GIF version

Theorem iscph 24021
Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
iscph.v 𝑉 = (Base‘𝑊)
iscph.h , = (·𝑖𝑊)
iscph.n 𝑁 = (norm‘𝑊)
iscph.f 𝐹 = (Scalar‘𝑊)
iscph.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
iscph (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
Distinct variable group:   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   , (𝑥)   𝐾(𝑥)   𝑁(𝑥)   𝑉(𝑥)

Proof of Theorem iscph
Dummy variables 𝑓 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3869 . . . . 5 (𝑊 ∈ (PreHil ∩ NrmMod) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod))
21anbi1i 627 . . . 4 ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)))
3 df-3an 1091 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)))
42, 3bitr4i 281 . . 3 ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)))
54anbi1i 627 . 2 (((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
6 fvexd 6710 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
7 fvexd 6710 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V)
8 simplr 769 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = (Scalar‘𝑤))
9 simpll 767 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑤 = 𝑊)
109fveq2d 6699 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = (Scalar‘𝑊))
11 iscph.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1210, 11eqtr4di 2789 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = 𝐹)
138, 12eqtrd 2771 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹)
14 simpr 488 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = (Base‘𝑓))
1513fveq2d 6699 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = (Base‘𝐹))
16 iscph.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐹)
1715, 16eqtr4di 2789 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = 𝐾)
1814, 17eqtrd 2771 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾)
1918oveq2d 7207 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂflds 𝑘) = (ℂflds 𝐾))
2013, 19eqeq12d 2752 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂflds 𝑘) ↔ 𝐹 = (ℂflds 𝐾)))
2118ineq1d 4112 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∩ (0[,)+∞)) = (𝐾 ∩ (0[,)+∞)))
2221imaeq2d 5914 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√ “ (𝑘 ∩ (0[,)+∞))) = (√ “ (𝐾 ∩ (0[,)+∞))))
2322, 18sseq12d 3920 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ↔ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾))
249fveq2d 6699 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = (norm‘𝑊))
25 iscph.n . . . . . . . . . 10 𝑁 = (norm‘𝑊)
2624, 25eqtr4di 2789 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = 𝑁)
279fveq2d 6699 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = (Base‘𝑊))
28 iscph.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
2927, 28eqtr4di 2789 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = 𝑉)
309fveq2d 6699 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (·𝑖𝑤) = (·𝑖𝑊))
31 iscph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
3230, 31eqtr4di 2789 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (·𝑖𝑤) = , )
3332oveqd 7208 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
3433fveq2d 6699 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
3529, 34mpteq12dv 5125 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
3626, 35eqeq12d 2752 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) ↔ 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
3720, 23, 363anbi123d 1438 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
38 3anass 1097 . . . . . . 7 ((𝐹 = (ℂflds 𝐾) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
3937, 38bitrdi 290 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
407, 39sbcied 3728 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
416, 40sbcied 3728 . . . 4 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
42 df-cph 24019 . . . 4 ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))}
4341, 42elrab2 3594 . . 3 (𝑊 ∈ ℂPreHil ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
44 anass 472 . . 3 (((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
4543, 44bitr4i 281 . 2 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
46 3anass 1097 . 2 (((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
475, 45, 463bitr4i 306 1 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  [wsbc 3683  cin 3852  wss 3853  cmpt 5120  cima 5539  cfv 6358  (class class class)co 7191  0cc0 10694  +∞cpnf 10829  [,)cico 12902  csqrt 14761  Basecbs 16666  s cress 16667  Scalarcsca 16752  ·𝑖cip 16754  fldccnfld 20317  PreHilcphl 20540  normcnm 23428  NrmModcnlm 23432  ℂPreHilccph 24017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-xp 5542  df-cnv 5544  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fv 6366  df-ov 7194  df-cph 24019
This theorem is referenced by:  cphphl  24022  cphnlm  24023  cphsca  24030  cphsqrtcl  24035  cphnmfval  24043  tcphcph  24088  cphsscph  24102
  Copyright terms: Public domain W3C validator