| Step | Hyp | Ref
| Expression |
| 1 | | elin 3967 |
. . . . 5
⊢ (𝑊 ∈ (PreHil ∩ NrmMod)
↔ (𝑊 ∈ PreHil
∧ 𝑊 ∈
NrmMod)) |
| 2 | 1 | anbi1i 624 |
. . . 4
⊢ ((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂfld
↾s 𝐾))) |
| 3 | | df-3an 1089 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
↔ ((𝑊 ∈ PreHil
∧ 𝑊 ∈ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾))) |
| 4 | 2, 3 | bitr4i 278 |
. . 3
⊢ ((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))) |
| 5 | 4 | anbi1i 624 |
. 2
⊢ (((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆
𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
| 6 | | fvexd 6921 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V) |
| 7 | | fvexd 6921 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V) |
| 8 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = (Scalar‘𝑤)) |
| 9 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑤 = 𝑊) |
| 10 | 9 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = (Scalar‘𝑊)) |
| 11 | | iscph.f |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑊) |
| 12 | 10, 11 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = 𝐹) |
| 13 | 8, 12 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹) |
| 14 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = (Base‘𝑓)) |
| 15 | 13 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = (Base‘𝐹)) |
| 16 | | iscph.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (Base‘𝐹) |
| 17 | 15, 16 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = 𝐾) |
| 18 | 14, 17 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾) |
| 19 | 18 | oveq2d 7447 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂfld
↾s 𝑘) =
(ℂfld ↾s 𝐾)) |
| 20 | 13, 19 | eqeq12d 2753 |
. . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂfld ↾s
𝑘) ↔ 𝐹 = (ℂfld
↾s 𝐾))) |
| 21 | 18 | ineq1d 4219 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∩ (0[,)+∞)) = (𝐾 ∩ (0[,)+∞))) |
| 22 | 21 | imaeq2d 6078 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√ “ (𝑘 ∩ (0[,)+∞))) =
(√ “ (𝐾 ∩
(0[,)+∞)))) |
| 23 | 22, 18 | sseq12d 4017 |
. . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((√ “ (𝑘 ∩ (0[,)+∞))) ⊆
𝑘 ↔ (√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾)) |
| 24 | 9 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = (norm‘𝑊)) |
| 25 | | iscph.n |
. . . . . . . . . 10
⊢ 𝑁 = (norm‘𝑊) |
| 26 | 24, 25 | eqtr4di 2795 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = 𝑁) |
| 27 | 9 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = (Base‘𝑊)) |
| 28 | | iscph.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑊) |
| 29 | 27, 28 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = 𝑉) |
| 30 | 9 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) →
(·𝑖‘𝑤) =
(·𝑖‘𝑊)) |
| 31 | | iscph.h |
. . . . . . . . . . . . 13
⊢ , =
(·𝑖‘𝑊) |
| 32 | 30, 31 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) →
(·𝑖‘𝑤) = , ) |
| 33 | 32 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
| 34 | 33 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
| 35 | 29, 34 | mpteq12dv 5233 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 36 | 26, 35 | eqeq12d 2753 |
. . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) ↔ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 37 | 20, 23, 36 | 3anbi123d 1438 |
. . . . . . 7
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ (√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
| 38 | | 3anass 1095 |
. . . . . . 7
⊢ ((𝐹 = (ℂfld
↾s 𝐾)
∧ (√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ (𝐹 = (ℂfld
↾s 𝐾)
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
| 39 | 37, 38 | bitrdi 287 |
. . . . . 6
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ ((√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
| 40 | 7, 39 | sbcied 3832 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ ((√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
| 41 | 6, 40 | sbcied 3832 |
. . . 4
⊢ (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ ((√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
| 42 | | df-cph 25202 |
. . . 4
⊢
ℂPreHil = {𝑤
∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |
| 43 | 41, 42 | elrab2 3695 |
. . 3
⊢ (𝑊 ∈ ℂPreHil ↔
(𝑊 ∈ (PreHil ∩
NrmMod) ∧ (𝐹 =
(ℂfld ↾s 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
| 44 | | anass 468 |
. . 3
⊢ (((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆
𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂfld
↾s 𝐾)
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
| 45 | 43, 44 | bitr4i 278 |
. 2
⊢ (𝑊 ∈ ℂPreHil ↔
((𝑊 ∈ (PreHil ∩
NrmMod) ∧ 𝐹 =
(ℂfld ↾s 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆
𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
| 46 | | 3anass 1095 |
. 2
⊢ (((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ (√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
| 47 | 5, 45, 46 | 3bitr4i 303 |
1
⊢ (𝑊 ∈ ℂPreHil ↔
((𝑊 ∈ PreHil ∧
𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ (√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |