Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. . . . 5
⊢ (𝑊 ∈ (PreHil ∩ NrmMod)
↔ (𝑊 ∈ PreHil
∧ 𝑊 ∈
NrmMod)) |
2 | 1 | anbi1i 623 |
. . . 4
⊢ ((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂfld
↾s 𝐾))) |
3 | | df-3an 1087 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
↔ ((𝑊 ∈ PreHil
∧ 𝑊 ∈ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾))) |
4 | 2, 3 | bitr4i 277 |
. . 3
⊢ ((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))) |
5 | 4 | anbi1i 623 |
. 2
⊢ (((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆
𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
6 | | fvexd 6771 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V) |
7 | | fvexd 6771 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V) |
8 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = (Scalar‘𝑤)) |
9 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑤 = 𝑊) |
10 | 9 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = (Scalar‘𝑊)) |
11 | | iscph.f |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑊) |
12 | 10, 11 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = 𝐹) |
13 | 8, 12 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹) |
14 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = (Base‘𝑓)) |
15 | 13 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = (Base‘𝐹)) |
16 | | iscph.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (Base‘𝐹) |
17 | 15, 16 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = 𝐾) |
18 | 14, 17 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾) |
19 | 18 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂfld
↾s 𝑘) =
(ℂfld ↾s 𝐾)) |
20 | 13, 19 | eqeq12d 2754 |
. . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂfld ↾s
𝑘) ↔ 𝐹 = (ℂfld
↾s 𝐾))) |
21 | 18 | ineq1d 4142 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∩ (0[,)+∞)) = (𝐾 ∩ (0[,)+∞))) |
22 | 21 | imaeq2d 5958 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√ “ (𝑘 ∩ (0[,)+∞))) =
(√ “ (𝐾 ∩
(0[,)+∞)))) |
23 | 22, 18 | sseq12d 3950 |
. . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((√ “ (𝑘 ∩ (0[,)+∞))) ⊆
𝑘 ↔ (√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾)) |
24 | 9 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = (norm‘𝑊)) |
25 | | iscph.n |
. . . . . . . . . 10
⊢ 𝑁 = (norm‘𝑊) |
26 | 24, 25 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = 𝑁) |
27 | 9 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = (Base‘𝑊)) |
28 | | iscph.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑊) |
29 | 27, 28 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = 𝑉) |
30 | 9 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) →
(·𝑖‘𝑤) =
(·𝑖‘𝑊)) |
31 | | iscph.h |
. . . . . . . . . . . . 13
⊢ , =
(·𝑖‘𝑊) |
32 | 30, 31 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) →
(·𝑖‘𝑤) = , ) |
33 | 32 | oveqd 7272 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
34 | 33 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
35 | 29, 34 | mpteq12dv 5161 |
. . . . . . . . 9
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
36 | 26, 35 | eqeq12d 2754 |
. . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) ↔ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
37 | 20, 23, 36 | 3anbi123d 1434 |
. . . . . . 7
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ (√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
38 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝐹 = (ℂfld
↾s 𝐾)
∧ (√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ (𝐹 = (ℂfld
↾s 𝐾)
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
39 | 37, 38 | bitrdi 286 |
. . . . . 6
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ ((√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
40 | 7, 39 | sbcied 3756 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ ((√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
41 | 6, 40 | sbcied 3756 |
. . . 4
⊢ (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) ↔ (𝐹 = (ℂfld ↾s
𝐾) ∧ ((√ “
(𝐾 ∩ (0[,)+∞)))
⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
42 | | df-cph 24237 |
. . . 4
⊢
ℂPreHil = {𝑤
∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |
43 | 41, 42 | elrab2 3620 |
. . 3
⊢ (𝑊 ∈ ℂPreHil ↔
(𝑊 ∈ (PreHil ∩
NrmMod) ∧ (𝐹 =
(ℂfld ↾s 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
44 | | anass 468 |
. . 3
⊢ (((𝑊 ∈ (PreHil ∩ NrmMod)
∧ 𝐹 =
(ℂfld ↾s 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆
𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂfld
↾s 𝐾)
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))))) |
45 | 43, 44 | bitr4i 277 |
. 2
⊢ (𝑊 ∈ ℂPreHil ↔
((𝑊 ∈ (PreHil ∩
NrmMod) ∧ 𝐹 =
(ℂfld ↾s 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆
𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
46 | | 3anass 1093 |
. 2
⊢ (((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ (√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ ((√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))))) |
47 | 5, 45, 46 | 3bitr4i 302 |
1
⊢ (𝑊 ∈ ℂPreHil ↔
((𝑊 ∈ PreHil ∧
𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s 𝐾))
∧ (√ “ (𝐾
∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |