Step | Hyp | Ref
| Expression |
1 | | elin 3963 |
. . . . 5
β’ (π β (PreHil β© NrmMod)
β (π β PreHil
β§ π β
NrmMod)) |
2 | 1 | anbi1i 624 |
. . . 4
β’ ((π β (PreHil β© NrmMod)
β§ πΉ =
(βfld βΎs πΎ)) β ((π β PreHil β§ π β NrmMod) β§ πΉ = (βfld
βΎs πΎ))) |
3 | | df-3an 1089 |
. . . 4
β’ ((π β PreHil β§ π β NrmMod β§ πΉ = (βfld
βΎs πΎ))
β ((π β PreHil
β§ π β NrmMod)
β§ πΉ =
(βfld βΎs πΎ))) |
4 | 2, 3 | bitr4i 277 |
. . 3
β’ ((π β (PreHil β© NrmMod)
β§ πΉ =
(βfld βΎs πΎ)) β (π β PreHil β§ π β NrmMod β§ πΉ = (βfld
βΎs πΎ))) |
5 | 4 | anbi1i 624 |
. 2
β’ (((π β (PreHil β© NrmMod)
β§ πΉ =
(βfld βΎs πΎ)) β§ ((β β (πΎ β© (0[,)+β))) β
πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))) β ((π β PreHil β§ π β NrmMod β§ πΉ = (βfld
βΎs πΎ))
β§ ((β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))))) |
6 | | fvexd 6903 |
. . . . 5
β’ (π€ = π β (Scalarβπ€) β V) |
7 | | fvexd 6903 |
. . . . . 6
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ) β V) |
8 | | simplr 767 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π = (Scalarβπ€)) |
9 | | simpll 765 |
. . . . . . . . . . . 12
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π€ = π) |
10 | 9 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (Scalarβπ€) = (Scalarβπ)) |
11 | | iscph.f |
. . . . . . . . . . 11
β’ πΉ = (Scalarβπ) |
12 | 10, 11 | eqtr4di 2790 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (Scalarβπ€) = πΉ) |
13 | 8, 12 | eqtrd 2772 |
. . . . . . . . 9
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π = πΉ) |
14 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π = (Baseβπ)) |
15 | 13 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (Baseβπ) = (BaseβπΉ)) |
16 | | iscph.k |
. . . . . . . . . . . 12
β’ πΎ = (BaseβπΉ) |
17 | 15, 16 | eqtr4di 2790 |
. . . . . . . . . . 11
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (Baseβπ) = πΎ) |
18 | 14, 17 | eqtrd 2772 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π = πΎ) |
19 | 18 | oveq2d 7421 |
. . . . . . . . 9
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (βfld
βΎs π) =
(βfld βΎs πΎ)) |
20 | 13, 19 | eqeq12d 2748 |
. . . . . . . 8
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (π = (βfld βΎs
π) β πΉ = (βfld
βΎs πΎ))) |
21 | 18 | ineq1d 4210 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (π β© (0[,)+β)) = (πΎ β© (0[,)+β))) |
22 | 21 | imaeq2d 6057 |
. . . . . . . . 9
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (β β (π β© (0[,)+β))) =
(β β (πΎ β©
(0[,)+β)))) |
23 | 22, 18 | sseq12d 4014 |
. . . . . . . 8
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β ((β β (π β© (0[,)+β))) β
π β (β β
(πΎ β© (0[,)+β)))
β πΎ)) |
24 | 9 | fveq2d 6892 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (normβπ€) = (normβπ)) |
25 | | iscph.n |
. . . . . . . . . 10
β’ π = (normβπ) |
26 | 24, 25 | eqtr4di 2790 |
. . . . . . . . 9
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (normβπ€) = π) |
27 | 9 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (Baseβπ€) = (Baseβπ)) |
28 | | iscph.v |
. . . . . . . . . . 11
β’ π = (Baseβπ) |
29 | 27, 28 | eqtr4di 2790 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (Baseβπ€) = π) |
30 | 9 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β
(Β·πβπ€) =
(Β·πβπ)) |
31 | | iscph.h |
. . . . . . . . . . . . 13
β’ , =
(Β·πβπ) |
32 | 30, 31 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β
(Β·πβπ€) = , ) |
33 | 32 | oveqd 7422 |
. . . . . . . . . . 11
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (π₯(Β·πβπ€)π₯) = (π₯ , π₯)) |
34 | 33 | fveq2d 6892 |
. . . . . . . . . 10
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (ββ(π₯(Β·πβπ€)π₯)) = (ββ(π₯ , π₯))) |
35 | 29, 34 | mpteq12dv 5238 |
. . . . . . . . 9
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))) = (π₯ β π β¦ (ββ(π₯ , π₯)))) |
36 | 26, 35 | eqeq12d 2748 |
. . . . . . . 8
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β ((normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))) β π = (π₯ β π β¦ (ββ(π₯ , π₯))))) |
37 | 20, 23, 36 | 3anbi123d 1436 |
. . . . . . 7
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β ((π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) β (πΉ = (βfld βΎs
πΎ) β§ (β β
(πΎ β© (0[,)+β)))
β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))))) |
38 | | 3anass 1095 |
. . . . . . 7
β’ ((πΉ = (βfld
βΎs πΎ)
β§ (β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))) β (πΉ = (βfld
βΎs πΎ)
β§ ((β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))))) |
39 | 37, 38 | bitrdi 286 |
. . . . . 6
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β ((π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) β (πΉ = (βfld βΎs
πΎ) β§ ((β β
(πΎ β© (0[,)+β)))
β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))))) |
40 | 7, 39 | sbcied 3821 |
. . . . 5
β’ ((π€ = π β§ π = (Scalarβπ€)) β ([(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) β (πΉ = (βfld βΎs
πΎ) β§ ((β β
(πΎ β© (0[,)+β)))
β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))))) |
41 | 6, 40 | sbcied 3821 |
. . . 4
β’ (π€ = π β ([(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯)))) β (πΉ = (βfld βΎs
πΎ) β§ ((β β
(πΎ β© (0[,)+β)))
β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))))) |
42 | | df-cph 24676 |
. . . 4
β’
βPreHil = {π€
β (PreHil β© NrmMod) β£ [(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))))} |
43 | 41, 42 | elrab2 3685 |
. . 3
β’ (π β βPreHil β
(π β (PreHil β©
NrmMod) β§ (πΉ =
(βfld βΎs πΎ) β§ ((β β (πΎ β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))))) |
44 | | anass 469 |
. . 3
β’ (((π β (PreHil β© NrmMod)
β§ πΉ =
(βfld βΎs πΎ)) β§ ((β β (πΎ β© (0[,)+β))) β
πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))) β (π β (PreHil β© NrmMod) β§ (πΉ = (βfld
βΎs πΎ)
β§ ((β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))))) |
45 | 43, 44 | bitr4i 277 |
. 2
β’ (π β βPreHil β
((π β (PreHil β©
NrmMod) β§ πΉ =
(βfld βΎs πΎ)) β§ ((β β (πΎ β© (0[,)+β))) β
πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))))) |
46 | | 3anass 1095 |
. 2
β’ (((π β PreHil β§ π β NrmMod β§ πΉ = (βfld
βΎs πΎ))
β§ (β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))) β ((π β PreHil β§ π β NrmMod β§ πΉ = (βfld
βΎs πΎ))
β§ ((β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯)))))) |
47 | 5, 45, 46 | 3bitr4i 302 |
1
β’ (π β βPreHil β
((π β PreHil β§
π β NrmMod β§ πΉ = (βfld
βΎs πΎ))
β§ (β β (πΎ
β© (0[,)+β))) β πΎ β§ π = (π₯ β π β¦ (ββ(π₯ , π₯))))) |