MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscph Structured version   Visualization version   GIF version

Theorem iscph 25223
Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
iscph.v 𝑉 = (Base‘𝑊)
iscph.h , = (·𝑖𝑊)
iscph.n 𝑁 = (norm‘𝑊)
iscph.f 𝐹 = (Scalar‘𝑊)
iscph.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
iscph (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
Distinct variable group:   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   , (𝑥)   𝐾(𝑥)   𝑁(𝑥)   𝑉(𝑥)

Proof of Theorem iscph
Dummy variables 𝑓 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3992 . . . . 5 (𝑊 ∈ (PreHil ∩ NrmMod) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod))
21anbi1i 623 . . . 4 ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)))
3 df-3an 1089 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)))
42, 3bitr4i 278 . . 3 ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)))
54anbi1i 623 . 2 (((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
6 fvexd 6935 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
7 fvexd 6935 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V)
8 simplr 768 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = (Scalar‘𝑤))
9 simpll 766 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑤 = 𝑊)
109fveq2d 6924 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = (Scalar‘𝑊))
11 iscph.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1210, 11eqtr4di 2798 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = 𝐹)
138, 12eqtrd 2780 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹)
14 simpr 484 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = (Base‘𝑓))
1513fveq2d 6924 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = (Base‘𝐹))
16 iscph.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐹)
1715, 16eqtr4di 2798 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = 𝐾)
1814, 17eqtrd 2780 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾)
1918oveq2d 7464 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂflds 𝑘) = (ℂflds 𝐾))
2013, 19eqeq12d 2756 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂflds 𝑘) ↔ 𝐹 = (ℂflds 𝐾)))
2118ineq1d 4240 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∩ (0[,)+∞)) = (𝐾 ∩ (0[,)+∞)))
2221imaeq2d 6089 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√ “ (𝑘 ∩ (0[,)+∞))) = (√ “ (𝐾 ∩ (0[,)+∞))))
2322, 18sseq12d 4042 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ↔ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾))
249fveq2d 6924 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = (norm‘𝑊))
25 iscph.n . . . . . . . . . 10 𝑁 = (norm‘𝑊)
2624, 25eqtr4di 2798 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = 𝑁)
279fveq2d 6924 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = (Base‘𝑊))
28 iscph.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
2927, 28eqtr4di 2798 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = 𝑉)
309fveq2d 6924 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (·𝑖𝑤) = (·𝑖𝑊))
31 iscph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
3230, 31eqtr4di 2798 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (·𝑖𝑤) = , )
3332oveqd 7465 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
3433fveq2d 6924 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
3529, 34mpteq12dv 5257 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
3626, 35eqeq12d 2756 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) ↔ 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
3720, 23, 363anbi123d 1436 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
38 3anass 1095 . . . . . . 7 ((𝐹 = (ℂflds 𝐾) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
3937, 38bitrdi 287 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
407, 39sbcied 3850 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
416, 40sbcied 3850 . . . 4 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
42 df-cph 25221 . . . 4 ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))}
4341, 42elrab2 3711 . . 3 (𝑊 ∈ ℂPreHil ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
44 anass 468 . . 3 (((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
4543, 44bitr4i 278 . 2 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
46 3anass 1095 . 2 (((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
475, 45, 463bitr4i 303 1 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  [wsbc 3804  cin 3975  wss 3976  cmpt 5249  cima 5703  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,)cico 13409  csqrt 15282  Basecbs 17258  s cress 17287  Scalarcsca 17314  ·𝑖cip 17316  fldccnfld 21387  PreHilcphl 21665  normcnm 24610  NrmModcnlm 24614  ℂPreHilccph 25219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-ov 7451  df-cph 25221
This theorem is referenced by:  cphphl  25224  cphnlm  25225  cphsca  25232  cphsqrtcl  25237  cphnmfval  25245  tcphcph  25290  cphsscph  25304
  Copyright terms: Public domain W3C validator