Detailed syntax breakdown of Definition df-tcph
Step | Hyp | Ref
| Expression |
1 | | ctcph 24331 |
. 2
class
toℂPreHil |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3432 |
. . 3
class
V |
4 | 2 | cv 1538 |
. . . 4
class 𝑤 |
5 | | vx |
. . . . 5
setvar 𝑥 |
6 | | cbs 16912 |
. . . . . 6
class
Base |
7 | 4, 6 | cfv 6433 |
. . . . 5
class
(Base‘𝑤) |
8 | 5 | cv 1538 |
. . . . . . 7
class 𝑥 |
9 | | cip 16967 |
. . . . . . . 8
class
·𝑖 |
10 | 4, 9 | cfv 6433 |
. . . . . . 7
class
(·𝑖‘𝑤) |
11 | 8, 8, 10 | co 7275 |
. . . . . 6
class (𝑥(·𝑖‘𝑤)𝑥) |
12 | | csqrt 14944 |
. . . . . 6
class
√ |
13 | 11, 12 | cfv 6433 |
. . . . 5
class
(√‘(𝑥(·𝑖‘𝑤)𝑥)) |
14 | 5, 7, 13 | cmpt 5157 |
. . . 4
class (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) |
15 | | ctng 23734 |
. . . 4
class
toNrmGrp |
16 | 4, 14, 15 | co 7275 |
. . 3
class (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) |
17 | 2, 3, 16 | cmpt 5157 |
. 2
class (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) |
18 | 1, 17 | wceq 1539 |
1
wff
toℂPreHil = (𝑤
∈ V ↦ (𝑤
toNrmGrp (𝑥 ∈
(Base‘𝑤) ↦
(√‘(𝑥(·𝑖‘𝑤)𝑥))))) |