MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tcph Structured version   Visualization version   GIF version

Definition df-tcph 24238
Description: Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph 24306). (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
df-tcph toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
Distinct variable group:   𝑥,𝑤

Detailed syntax breakdown of Definition df-tcph
StepHypRef Expression
1 ctcph 24236 . 2 class toℂPreHil
2 vw . . 3 setvar 𝑤
3 cvv 3422 . . 3 class V
42cv 1538 . . . 4 class 𝑤
5 vx . . . . 5 setvar 𝑥
6 cbs 16840 . . . . . 6 class Base
74, 6cfv 6418 . . . . 5 class (Base‘𝑤)
85cv 1538 . . . . . . 7 class 𝑥
9 cip 16893 . . . . . . . 8 class ·𝑖
104, 9cfv 6418 . . . . . . 7 class (·𝑖𝑤)
118, 8, 10co 7255 . . . . . 6 class (𝑥(·𝑖𝑤)𝑥)
12 csqrt 14872 . . . . . 6 class
1311, 12cfv 6418 . . . . 5 class (√‘(𝑥(·𝑖𝑤)𝑥))
145, 7, 13cmpt 5153 . . . 4 class (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))
15 ctng 23640 . . . 4 class toNrmGrp
164, 14, 15co 7255 . . 3 class (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))
172, 3, 16cmpt 5153 . 2 class (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
181, 17wceq 1539 1 wff toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
Colors of variables: wff setvar class
This definition is referenced by:  tcphval  24287
  Copyright terms: Public domain W3C validator