MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tcph Structured version   Visualization version   GIF version

Definition df-tcph 24677
Description: Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph 24745). (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
df-tcph toβ„‚PreHil = (𝑀 ∈ V ↦ (𝑀 toNrmGrp (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))))
Distinct variable group:   π‘₯,𝑀

Detailed syntax breakdown of Definition df-tcph
StepHypRef Expression
1 ctcph 24675 . 2 class toβ„‚PreHil
2 vw . . 3 setvar 𝑀
3 cvv 3474 . . 3 class V
42cv 1540 . . . 4 class 𝑀
5 vx . . . . 5 setvar π‘₯
6 cbs 17140 . . . . . 6 class Base
74, 6cfv 6540 . . . . 5 class (Baseβ€˜π‘€)
85cv 1540 . . . . . . 7 class π‘₯
9 cip 17198 . . . . . . . 8 class ·𝑖
104, 9cfv 6540 . . . . . . 7 class (Β·π‘–β€˜π‘€)
118, 8, 10co 7405 . . . . . 6 class (π‘₯(Β·π‘–β€˜π‘€)π‘₯)
12 csqrt 15176 . . . . . 6 class √
1311, 12cfv 6540 . . . . 5 class (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))
145, 7, 13cmpt 5230 . . . 4 class (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))
15 ctng 24078 . . . 4 class toNrmGrp
164, 14, 15co 7405 . . 3 class (𝑀 toNrmGrp (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))
172, 3, 16cmpt 5230 . 2 class (𝑀 ∈ V ↦ (𝑀 toNrmGrp (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))))
181, 17wceq 1541 1 wff toβ„‚PreHil = (𝑀 ∈ V ↦ (𝑀 toNrmGrp (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))))
Colors of variables: wff setvar class
This definition is referenced by:  tcphval  24726
  Copyright terms: Public domain W3C validator