| Metamath
Proof Explorer Theorem List (p. 247 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cnghm 24601 | The class of normed group homomorphisms. |
| class NGHom | ||
| Syntax | cnmhm 24602 | The class of normed module homomorphisms. |
| class NMHom | ||
| Definition | df-nmo 24603* | Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 〈𝑠, 𝑡〉. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))) | ||
| Definition | df-nghm 24604* | Define the set of normed group homomorphisms between two normed groups. A normed group homomorphism is a group homomorphism which additionally bounds the increase of norm by a fixed real operator. In vector spaces these are also known as bounded linear operators. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | ||
| Definition | df-nmhm 24605* | Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant 𝑐 such that... (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | ||
| Theorem | nmoffn 24606 | The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ normOp Fn (NrmGrp × NrmGrp) | ||
| Theorem | reldmnghm 24607 | Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ Rel dom NGHom | ||
| Theorem | reldmnmhm 24608 | Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ Rel dom NMHom | ||
| Theorem | nmofval 24609* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))) | ||
| Theorem | nmoval 24610* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) | ||
| Theorem | nmogelb 24611* | Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → 𝐴 ≤ 𝑟))) | ||
| Theorem | nmolb 24612* | Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) | ||
| Theorem | nmolb2d 24613* | Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) | ||
| Theorem | nmof 24614 | The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) | ||
| Theorem | nmocl 24615 | The operator norm of an operator is an extended real. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ∈ ℝ*) | ||
| Theorem | nmoge0 24616 | The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) | ||
| Theorem | nghmfval 24617 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) | ||
| Theorem | isnghm 24618 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | ||
| Theorem | isnghm2 24619 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
| Theorem | isnghm3 24620 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) < +∞)) | ||
| Theorem | bddnghm 24621 | A bounded group homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐴 ∈ ℝ ∧ (𝑁‘𝐹) ≤ 𝐴)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nghmcl 24622 | A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
| Theorem | nmoi 24623 | The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋))) | ||
| Theorem | nmoix 24624 | The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) | ||
| Theorem | nmoi2 24625 | The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹)) | ||
| Theorem | nmoleub 24626* | The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝑥 ≠ 0 → ((𝑀‘(𝐹‘𝑥)) / (𝐿‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nghmrcl1 24627 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | ||
| Theorem | nghmrcl2 24628 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | ||
| Theorem | nghmghm 24629 | A normed group homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | nmo0 24630 | The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) | ||
| Theorem | nmoeq0 24631 | The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 }))) | ||
| Theorem | nmoco 24632 | An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑈) & ⊢ 𝐿 = (𝑇 normOp 𝑈) & ⊢ 𝑀 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘ 𝐺)) ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) | ||
| Theorem | nghmco 24633 | The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) | ||
| Theorem | nmotri 24634 | Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘f + 𝐺)) ≤ ((𝑁‘𝐹) + (𝑁‘𝐺))) | ||
| Theorem | nghmplusg 24635 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | 0nghm 24636 | The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nmoid 24637 | The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑆) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1) | ||
| Theorem | idnghm 24638 | The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) | ||
| Theorem | nmods 24639 | Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐶 = (dist‘𝑆) & ⊢ 𝐷 = (dist‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) | ||
| Theorem | nghmcn 24640 | A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | isnmhm 24641 | A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) | ||
| Theorem | nmhmrcl1 24642 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | ||
| Theorem | nmhmrcl2 24643 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | ||
| Theorem | nmhmlmhm 24644 | A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
| Theorem | nmhmnghm 24645 | A normed module homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nmhmghm 24646 | A normed module homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | isnmhm2 24647 | A normed module homomorphism is a left module homomorphism with bounded norm (a bounded linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
| Theorem | nmhmcl 24648 | A normed module homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
| Theorem | idnmhm 24649 | The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆)) | ||
| Theorem | 0nmhm 24650 | The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐹 = (Scalar‘𝑆) & ⊢ 𝐺 = (Scalar‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇)) | ||
| Theorem | nmhmco 24651 | The composition of bounded linear operators is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 NMHom 𝑈) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NMHom 𝑈)) | ||
| Theorem | nmhmplusg 24652 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) | ||
| Theorem | qtopbaslem 24653 | The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝑆 ⊆ ℝ* ⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases | ||
| Theorem | qtopbas 24654 | The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.) |
| ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | ||
| Theorem | retopbas 24655 | A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
| ⊢ ran (,) ∈ TopBases | ||
| Theorem | retop 24656 | The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ (topGen‘ran (,)) ∈ Top | ||
| Theorem | uniretop 24657 | The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ ℝ = ∪ (topGen‘ran (,)) | ||
| Theorem | retopon 24658 | The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | ||
| Theorem | retps 24659 | The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.) |
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉, 〈(TopSet‘ndx), (topGen‘ran (,))〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | iooretop 24660 | Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | ||
| Theorem | icccld 24661 | Closed intervals are closed sets of the standard topology on ℝ. (Contributed by FL, 14-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | icopnfcld 24662 | Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | iocmnfcld 24663 | Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | qdensere 24664 | ℚ is dense in the standard topology on ℝ. (Contributed by NM, 1-Mar-2007.) |
| ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | ||
| Theorem | cnmetdval 24665 | Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | cnmet 24666 | The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
| ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | ||
| Theorem | cnxmet 24667 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | ||
| Theorem | cnbl0 24668 | Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) | ||
| Theorem | cnblcld 24669* | Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) | ||
| Theorem | cnfldms 24670 | The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ MetSp | ||
| Theorem | cnfldxms 24671 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ ∞MetSp | ||
| Theorem | cnfldtps 24672 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ TopSp | ||
| Theorem | cnfldnm 24673 | The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ abs = (norm‘ℂfld) | ||
| Theorem | cnngp 24674 | The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmGrp | ||
| Theorem | cnnrg 24675 | The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmRing | ||
| Theorem | cnfldtopn 24676 | The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | ||
| Theorem | cnfldtopon 24677 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
| Theorem | cnfldtop 24678 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | cnfldhaus 24679 | The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Haus | ||
| Theorem | unicntop 24680 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ = ∪ (TopOpen‘ℂfld) | ||
| Theorem | cnopn 24681 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ ∈ (TopOpen‘ℂfld) | ||
| Theorem | cnn0opn 24682 | The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025.) |
| ⊢ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld) | ||
| Theorem | zringnrg 24683 | The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ NrmRing | ||
| Theorem | remetdval 24684 | Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | remet 24685 | The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (Met‘ℝ) | ||
| Theorem | rexmet 24686 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ) | ||
| Theorem | bl2ioo 24687 | A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | ||
| Theorem | ioo2bl 24688 | An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | ||
| Theorem | ioo2blex 24689 | An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | ||
| Theorem | blssioo 24690 | The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran (,) | ||
| Theorem | tgioo 24691 | The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | qdensere2 24692 | ℚ is dense in ℝ. (Contributed by NM, 24-Aug-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((cls‘𝐽)‘ℚ) = ℝ | ||
| Theorem | blcvx 24693 | An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) ⇒ ⊢ (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆) | ||
| Theorem | rehaus 24694 | The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007.) |
| ⊢ (topGen‘ran (,)) ∈ Haus | ||
| Theorem | tgqioo 24695 | The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝑄 = (topGen‘((,) “ (ℚ × ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 | ||
| Theorem | re2ndc 24696 | The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (topGen‘ran (,)) ∈ 2ndω | ||
| Theorem | resubmet 24697 | The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) | ||
| Theorem | tgioo2 24698 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) | ||
| Theorem | rerest 24699 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
| Theorem | tgioo4 24700 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |