| Metamath
Proof Explorer Theorem List (p. 247 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nvclvec 24601 | A normed vector space is a left vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LVec) | ||
| Theorem | nvclmod 24602 | A normed vector space is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | ||
| Theorem | isnvc2 24603 | A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) | ||
| Theorem | nvctvc 24604 | A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ TopVec) | ||
| Theorem | lssnlm 24605 | A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmMod) | ||
| Theorem | lssnvc 24606 | A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) | ||
| Theorem | rlmnvc 24607 | The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (ringLMod‘𝑅) ∈ NrmVec) | ||
| Theorem | ngpocelbl 24608 | Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁‘𝐴) < 𝑅)) | ||
| Syntax | cnmo 24609 | The operator norm function. |
| class normOp | ||
| Syntax | cnghm 24610 | The class of normed group homomorphisms. |
| class NGHom | ||
| Syntax | cnmhm 24611 | The class of normed module homomorphisms. |
| class NMHom | ||
| Definition | df-nmo 24612* | Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 〈𝑠, 𝑡〉. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))) | ||
| Definition | df-nghm 24613* | Define the set of normed group homomorphisms between two normed groups. A normed group homomorphism is a group homomorphism which additionally bounds the increase of norm by a fixed real operator. In vector spaces these are also known as bounded linear operators. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | ||
| Definition | df-nmhm 24614* | Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant 𝑐 such that... (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | ||
| Theorem | nmoffn 24615 | The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ normOp Fn (NrmGrp × NrmGrp) | ||
| Theorem | reldmnghm 24616 | Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ Rel dom NGHom | ||
| Theorem | reldmnmhm 24617 | Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ Rel dom NMHom | ||
| Theorem | nmofval 24618* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))) | ||
| Theorem | nmoval 24619* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) | ||
| Theorem | nmogelb 24620* | Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → 𝐴 ≤ 𝑟))) | ||
| Theorem | nmolb 24621* | Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) | ||
| Theorem | nmolb2d 24622* | Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) | ||
| Theorem | nmof 24623 | The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) | ||
| Theorem | nmocl 24624 | The operator norm of an operator is an extended real. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ∈ ℝ*) | ||
| Theorem | nmoge0 24625 | The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) | ||
| Theorem | nghmfval 24626 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) | ||
| Theorem | isnghm 24627 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | ||
| Theorem | isnghm2 24628 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
| Theorem | isnghm3 24629 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) < +∞)) | ||
| Theorem | bddnghm 24630 | A bounded group homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐴 ∈ ℝ ∧ (𝑁‘𝐹) ≤ 𝐴)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nghmcl 24631 | A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
| Theorem | nmoi 24632 | The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋))) | ||
| Theorem | nmoix 24633 | The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) | ||
| Theorem | nmoi2 24634 | The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹)) | ||
| Theorem | nmoleub 24635* | The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝑥 ≠ 0 → ((𝑀‘(𝐹‘𝑥)) / (𝐿‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nghmrcl1 24636 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | ||
| Theorem | nghmrcl2 24637 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | ||
| Theorem | nghmghm 24638 | A normed group homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | nmo0 24639 | The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) | ||
| Theorem | nmoeq0 24640 | The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 }))) | ||
| Theorem | nmoco 24641 | An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑈) & ⊢ 𝐿 = (𝑇 normOp 𝑈) & ⊢ 𝑀 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘ 𝐺)) ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) | ||
| Theorem | nghmco 24642 | The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) | ||
| Theorem | nmotri 24643 | Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘f + 𝐺)) ≤ ((𝑁‘𝐹) + (𝑁‘𝐺))) | ||
| Theorem | nghmplusg 24644 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | 0nghm 24645 | The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nmoid 24646 | The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑆) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1) | ||
| Theorem | idnghm 24647 | The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) | ||
| Theorem | nmods 24648 | Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐶 = (dist‘𝑆) & ⊢ 𝐷 = (dist‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) | ||
| Theorem | nghmcn 24649 | A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | isnmhm 24650 | A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) | ||
| Theorem | nmhmrcl1 24651 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | ||
| Theorem | nmhmrcl2 24652 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | ||
| Theorem | nmhmlmhm 24653 | A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
| Theorem | nmhmnghm 24654 | A normed module homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nmhmghm 24655 | A normed module homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | isnmhm2 24656 | A normed module homomorphism is a left module homomorphism with bounded norm (a bounded linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
| Theorem | nmhmcl 24657 | A normed module homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
| Theorem | idnmhm 24658 | The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆)) | ||
| Theorem | 0nmhm 24659 | The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐹 = (Scalar‘𝑆) & ⊢ 𝐺 = (Scalar‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇)) | ||
| Theorem | nmhmco 24660 | The composition of bounded linear operators is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 NMHom 𝑈) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NMHom 𝑈)) | ||
| Theorem | nmhmplusg 24661 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) | ||
| Theorem | qtopbaslem 24662 | The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝑆 ⊆ ℝ* ⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases | ||
| Theorem | qtopbas 24663 | The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.) |
| ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | ||
| Theorem | retopbas 24664 | A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
| ⊢ ran (,) ∈ TopBases | ||
| Theorem | retop 24665 | The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ (topGen‘ran (,)) ∈ Top | ||
| Theorem | uniretop 24666 | The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ ℝ = ∪ (topGen‘ran (,)) | ||
| Theorem | retopon 24667 | The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | ||
| Theorem | retps 24668 | The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.) |
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉, 〈(TopSet‘ndx), (topGen‘ran (,))〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | iooretop 24669 | Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | ||
| Theorem | icccld 24670 | Closed intervals are closed sets of the standard topology on ℝ. (Contributed by FL, 14-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | icopnfcld 24671 | Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | iocmnfcld 24672 | Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | qdensere 24673 | ℚ is dense in the standard topology on ℝ. (Contributed by NM, 1-Mar-2007.) |
| ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | ||
| Theorem | cnmetdval 24674 | Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | cnmet 24675 | The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
| ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | ||
| Theorem | cnxmet 24676 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | ||
| Theorem | cnbl0 24677 | Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) | ||
| Theorem | cnblcld 24678* | Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) | ||
| Theorem | cnfldms 24679 | The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ MetSp | ||
| Theorem | cnfldxms 24680 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ ∞MetSp | ||
| Theorem | cnfldtps 24681 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ TopSp | ||
| Theorem | cnfldnm 24682 | The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ abs = (norm‘ℂfld) | ||
| Theorem | cnngp 24683 | The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmGrp | ||
| Theorem | cnnrg 24684 | The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmRing | ||
| Theorem | cnfldtopn 24685 | The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | ||
| Theorem | cnfldtopon 24686 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
| Theorem | cnfldtop 24687 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | cnfldhaus 24688 | The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Haus | ||
| Theorem | unicntop 24689 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ = ∪ (TopOpen‘ℂfld) | ||
| Theorem | cnopn 24690 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ ∈ (TopOpen‘ℂfld) | ||
| Theorem | cnn0opn 24691 | The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025.) |
| ⊢ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld) | ||
| Theorem | zringnrg 24692 | The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ NrmRing | ||
| Theorem | remetdval 24693 | Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | remet 24694 | The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (Met‘ℝ) | ||
| Theorem | rexmet 24695 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ) | ||
| Theorem | bl2ioo 24696 | A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | ||
| Theorem | ioo2bl 24697 | An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | ||
| Theorem | ioo2blex 24698 | An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | ||
| Theorem | blssioo 24699 | The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran (,) | ||
| Theorem | tgioo 24700 | The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |