| Metamath
Proof Explorer Theorem List (p. 247 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rlmnlm 24601 | The ring module over a normed ring is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod) | ||
| Theorem | rlmnm 24602 | The norm function in the ring module. (Contributed by AV, 9-Oct-2021.) |
| ⊢ (norm‘𝑅) = (norm‘(ringLMod‘𝑅)) | ||
| Theorem | nrgtrg 24603 | A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) | ||
| Theorem | nrginvrcnlem 24604* | Lemma for nrginvrcn 24605. Compare this proof with reccn2 15501, the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝐷 = (dist‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑇 = (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) | ||
| Theorem | nrginvrcn 24605 | The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) | ||
| Theorem | nrgtdrg 24606 | A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing) | ||
| Theorem | nlmtlm 24607 | A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ TopMod) | ||
| Theorem | isnvc 24608 | A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | ||
| Theorem | nvcnlm 24609 | A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | ||
| Theorem | nvclvec 24610 | A normed vector space is a left vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LVec) | ||
| Theorem | nvclmod 24611 | A normed vector space is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | ||
| Theorem | isnvc2 24612 | A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) | ||
| Theorem | nvctvc 24613 | A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ TopVec) | ||
| Theorem | lssnlm 24614 | A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmMod) | ||
| Theorem | lssnvc 24615 | A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) | ||
| Theorem | rlmnvc 24616 | The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (ringLMod‘𝑅) ∈ NrmVec) | ||
| Theorem | ngpocelbl 24617 | Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁‘𝐴) < 𝑅)) | ||
| Syntax | cnmo 24618 | The operator norm function. |
| class normOp | ||
| Syntax | cnghm 24619 | The class of normed group homomorphisms. |
| class NGHom | ||
| Syntax | cnmhm 24620 | The class of normed module homomorphisms. |
| class NMHom | ||
| Definition | df-nmo 24621* | Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 〈𝑠, 𝑡〉. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))) | ||
| Definition | df-nghm 24622* | Define the set of normed group homomorphisms between two normed groups. A normed group homomorphism is a group homomorphism which additionally bounds the increase of norm by a fixed real operator. In vector spaces these are also known as bounded linear operators. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | ||
| Definition | df-nmhm 24623* | Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant 𝑐 such that... (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | ||
| Theorem | nmoffn 24624 | The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ normOp Fn (NrmGrp × NrmGrp) | ||
| Theorem | reldmnghm 24625 | Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ Rel dom NGHom | ||
| Theorem | reldmnmhm 24626 | Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ Rel dom NMHom | ||
| Theorem | nmofval 24627* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))) | ||
| Theorem | nmoval 24628* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) | ||
| Theorem | nmogelb 24629* | Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → 𝐴 ≤ 𝑟))) | ||
| Theorem | nmolb 24630* | Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) | ||
| Theorem | nmolb2d 24631* | Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) | ||
| Theorem | nmof 24632 | The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) | ||
| Theorem | nmocl 24633 | The operator norm of an operator is an extended real. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ∈ ℝ*) | ||
| Theorem | nmoge0 24634 | The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) | ||
| Theorem | nghmfval 24635 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) | ||
| Theorem | isnghm 24636 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | ||
| Theorem | isnghm2 24637 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
| Theorem | isnghm3 24638 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) < +∞)) | ||
| Theorem | bddnghm 24639 | A bounded group homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐴 ∈ ℝ ∧ (𝑁‘𝐹) ≤ 𝐴)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nghmcl 24640 | A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
| Theorem | nmoi 24641 | The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋))) | ||
| Theorem | nmoix 24642 | The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) | ||
| Theorem | nmoi2 24643 | The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹)) | ||
| Theorem | nmoleub 24644* | The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝑥 ≠ 0 → ((𝑀‘(𝐹‘𝑥)) / (𝐿‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nghmrcl1 24645 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | ||
| Theorem | nghmrcl2 24646 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | ||
| Theorem | nghmghm 24647 | A normed group homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | nmo0 24648 | The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) | ||
| Theorem | nmoeq0 24649 | The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 }))) | ||
| Theorem | nmoco 24650 | An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑈) & ⊢ 𝐿 = (𝑇 normOp 𝑈) & ⊢ 𝑀 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘ 𝐺)) ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) | ||
| Theorem | nghmco 24651 | The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) | ||
| Theorem | nmotri 24652 | Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘f + 𝐺)) ≤ ((𝑁‘𝐹) + (𝑁‘𝐺))) | ||
| Theorem | nghmplusg 24653 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | 0nghm 24654 | The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nmoid 24655 | The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑆) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1) | ||
| Theorem | idnghm 24656 | The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) | ||
| Theorem | nmods 24657 | Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐶 = (dist‘𝑆) & ⊢ 𝐷 = (dist‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) | ||
| Theorem | nghmcn 24658 | A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | isnmhm 24659 | A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) | ||
| Theorem | nmhmrcl1 24660 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | ||
| Theorem | nmhmrcl2 24661 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | ||
| Theorem | nmhmlmhm 24662 | A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
| Theorem | nmhmnghm 24663 | A normed module homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
| Theorem | nmhmghm 24664 | A normed module homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | isnmhm2 24665 | A normed module homomorphism is a left module homomorphism with bounded norm (a bounded linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
| Theorem | nmhmcl 24666 | A normed module homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
| Theorem | idnmhm 24667 | The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆)) | ||
| Theorem | 0nmhm 24668 | The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐹 = (Scalar‘𝑆) & ⊢ 𝐺 = (Scalar‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇)) | ||
| Theorem | nmhmco 24669 | The composition of bounded linear operators is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 NMHom 𝑈) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NMHom 𝑈)) | ||
| Theorem | nmhmplusg 24670 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) | ||
| Theorem | qtopbaslem 24671 | The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝑆 ⊆ ℝ* ⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases | ||
| Theorem | qtopbas 24672 | The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.) |
| ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | ||
| Theorem | retopbas 24673 | A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
| ⊢ ran (,) ∈ TopBases | ||
| Theorem | retop 24674 | The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ (topGen‘ran (,)) ∈ Top | ||
| Theorem | uniretop 24675 | The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ ℝ = ∪ (topGen‘ran (,)) | ||
| Theorem | retopon 24676 | The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | ||
| Theorem | retps 24677 | The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.) |
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉, 〈(TopSet‘ndx), (topGen‘ran (,))〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | iooretop 24678 | Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | ||
| Theorem | icccld 24679 | Closed intervals are closed sets of the standard topology on ℝ. (Contributed by FL, 14-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | icopnfcld 24680 | Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | iocmnfcld 24681 | Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | qdensere 24682 | ℚ is dense in the standard topology on ℝ. (Contributed by NM, 1-Mar-2007.) |
| ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | ||
| Theorem | cnmetdval 24683 | Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | cnmet 24684 | The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
| ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | ||
| Theorem | cnxmet 24685 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | ||
| Theorem | cnbl0 24686 | Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) | ||
| Theorem | cnblcld 24687* | Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) | ||
| Theorem | cnfldms 24688 | The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ MetSp | ||
| Theorem | cnfldxms 24689 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ ∞MetSp | ||
| Theorem | cnfldtps 24690 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ TopSp | ||
| Theorem | cnfldnm 24691 | The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ abs = (norm‘ℂfld) | ||
| Theorem | cnngp 24692 | The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmGrp | ||
| Theorem | cnnrg 24693 | The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmRing | ||
| Theorem | cnfldtopn 24694 | The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | ||
| Theorem | cnfldtopon 24695 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
| Theorem | cnfldtop 24696 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | cnfldhaus 24697 | The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Haus | ||
| Theorem | unicntop 24698 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ = ∪ (TopOpen‘ℂfld) | ||
| Theorem | cnopn 24699 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ ∈ (TopOpen‘ℂfld) | ||
| Theorem | cnn0opn 24700 | The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025.) |
| ⊢ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |