Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cplmet Structured version   Visualization version   GIF version

Definition df-cplmet 34620
Description: A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-cplmet cplMetSp = (𝑀 ∈ V ↦ ⦋((𝑀 ↑s β„•) β†Ύs (Cauβ€˜(distβ€˜π‘€))) / π‘Ÿβ¦Œβ¦‹(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩}))
Distinct variable group:   𝑒,𝑓,𝑔,𝑗,𝑝,π‘ž,π‘Ÿ,𝑣,𝑀,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-cplmet
StepHypRef Expression
1 ccpms 34613 . 2 class cplMetSp
2 vw . . 3 setvar 𝑀
3 cvv 3474 . . 3 class V
4 vr . . . 4 setvar π‘Ÿ
52cv 1540 . . . . . 6 class 𝑀
6 cn 12211 . . . . . 6 class β„•
7 cpws 17391 . . . . . 6 class ↑s
85, 6, 7co 7408 . . . . 5 class (𝑀 ↑s β„•)
9 cds 17205 . . . . . . 7 class dist
105, 9cfv 6543 . . . . . 6 class (distβ€˜π‘€)
11 ccau 24769 . . . . . 6 class Cau
1210, 11cfv 6543 . . . . 5 class (Cauβ€˜(distβ€˜π‘€))
13 cress 17172 . . . . 5 class β†Ύs
148, 12, 13co 7408 . . . 4 class ((𝑀 ↑s β„•) β†Ύs (Cauβ€˜(distβ€˜π‘€)))
15 vv . . . . 5 setvar 𝑣
164cv 1540 . . . . . 6 class π‘Ÿ
17 cbs 17143 . . . . . 6 class Base
1816, 17cfv 6543 . . . . 5 class (Baseβ€˜π‘Ÿ)
19 ve . . . . . 6 setvar 𝑒
20 vf . . . . . . . . . . 11 setvar 𝑓
2120cv 1540 . . . . . . . . . 10 class 𝑓
22 vg . . . . . . . . . . 11 setvar 𝑔
2322cv 1540 . . . . . . . . . 10 class 𝑔
2421, 23cpr 4630 . . . . . . . . 9 class {𝑓, 𝑔}
2515cv 1540 . . . . . . . . 9 class 𝑣
2624, 25wss 3948 . . . . . . . 8 wff {𝑓, 𝑔} βŠ† 𝑣
27 vj . . . . . . . . . . . . 13 setvar 𝑗
2827cv 1540 . . . . . . . . . . . 12 class 𝑗
29 cuz 12821 . . . . . . . . . . . 12 class β„€β‰₯
3028, 29cfv 6543 . . . . . . . . . . 11 class (β„€β‰₯β€˜π‘—)
3128, 23cfv 6543 . . . . . . . . . . . 12 class (π‘”β€˜π‘—)
32 vx . . . . . . . . . . . . 13 setvar π‘₯
3332cv 1540 . . . . . . . . . . . 12 class π‘₯
34 cbl 20930 . . . . . . . . . . . . 13 class ball
3510, 34cfv 6543 . . . . . . . . . . . 12 class (ballβ€˜(distβ€˜π‘€))
3631, 33, 35co 7408 . . . . . . . . . . 11 class ((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯)
3721, 30cres 5678 . . . . . . . . . . 11 class (𝑓 β†Ύ (β„€β‰₯β€˜π‘—))
3830, 36, 37wf 6539 . . . . . . . . . 10 wff (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯)
39 cz 12557 . . . . . . . . . 10 class β„€
4038, 27, 39wrex 3070 . . . . . . . . 9 wff βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯)
41 crp 12973 . . . . . . . . 9 class ℝ+
4240, 32, 41wral 3061 . . . . . . . 8 wff βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯)
4326, 42wa 396 . . . . . . 7 wff ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))
4443, 20, 22copab 5210 . . . . . 6 class {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))}
4519cv 1540 . . . . . . . 8 class 𝑒
46 cqus 17450 . . . . . . . 8 class /s
4716, 45, 46co 7408 . . . . . . 7 class (π‘Ÿ /s 𝑒)
48 cnx 17125 . . . . . . . . . 10 class ndx
4948, 9cfv 6543 . . . . . . . . 9 class (distβ€˜ndx)
50 vp . . . . . . . . . . . . . . . . 17 setvar 𝑝
5150cv 1540 . . . . . . . . . . . . . . . 16 class 𝑝
5251, 45cec 8700 . . . . . . . . . . . . . . 15 class [𝑝]𝑒
5333, 52wceq 1541 . . . . . . . . . . . . . 14 wff π‘₯ = [𝑝]𝑒
54 vy . . . . . . . . . . . . . . . 16 setvar 𝑦
5554cv 1540 . . . . . . . . . . . . . . 15 class 𝑦
56 vq . . . . . . . . . . . . . . . . 17 setvar π‘ž
5756cv 1540 . . . . . . . . . . . . . . . 16 class π‘ž
5857, 45cec 8700 . . . . . . . . . . . . . . 15 class [π‘ž]𝑒
5955, 58wceq 1541 . . . . . . . . . . . . . 14 wff 𝑦 = [π‘ž]𝑒
6053, 59wa 396 . . . . . . . . . . . . 13 wff (π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒)
6116, 9cfv 6543 . . . . . . . . . . . . . . . 16 class (distβ€˜π‘Ÿ)
6261cof 7667 . . . . . . . . . . . . . . 15 class ∘f (distβ€˜π‘Ÿ)
6351, 57, 62co 7408 . . . . . . . . . . . . . 14 class (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž)
64 vz . . . . . . . . . . . . . . 15 setvar 𝑧
6564cv 1540 . . . . . . . . . . . . . 14 class 𝑧
66 cli 15427 . . . . . . . . . . . . . 14 class ⇝
6763, 65, 66wbr 5148 . . . . . . . . . . . . 13 wff (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧
6860, 67wa 396 . . . . . . . . . . . 12 wff ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)
6968, 56, 25wrex 3070 . . . . . . . . . . 11 wff βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)
7069, 50, 25wrex 3070 . . . . . . . . . 10 wff βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)
7170, 32, 54, 64coprab 7409 . . . . . . . . 9 class {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}
7249, 71cop 4634 . . . . . . . 8 class ⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩
7372csn 4628 . . . . . . 7 class {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩}
74 csts 17095 . . . . . . 7 class sSet
7547, 73, 74co 7408 . . . . . 6 class ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩})
7619, 44, 75csb 3893 . . . . 5 class ⦋{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩})
7715, 18, 76csb 3893 . . . 4 class ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩})
784, 14, 77csb 3893 . . 3 class ⦋((𝑀 ↑s β„•) β†Ύs (Cauβ€˜(distβ€˜π‘€))) / π‘Ÿβ¦Œβ¦‹(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩})
792, 3, 78cmpt 5231 . 2 class (𝑀 ∈ V ↦ ⦋((𝑀 ↑s β„•) β†Ύs (Cauβ€˜(distβ€˜π‘€))) / π‘Ÿβ¦Œβ¦‹(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩}))
801, 79wceq 1541 1 wff cplMetSp = (𝑀 ∈ V ↦ ⦋((𝑀 ↑s β„•) β†Ύs (Cauβ€˜(distβ€˜π‘€))) / π‘Ÿβ¦Œβ¦‹(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩}))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator