Step | Hyp | Ref
| Expression |
1 | | ccpms 34613 |
. 2
class
cplMetSp |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vr |
. . . 4
setvar π |
5 | 2 | cv 1540 |
. . . . . 6
class π€ |
6 | | cn 12211 |
. . . . . 6
class
β |
7 | | cpws 17391 |
. . . . . 6
class
βs |
8 | 5, 6, 7 | co 7408 |
. . . . 5
class (π€ βs
β) |
9 | | cds 17205 |
. . . . . . 7
class
dist |
10 | 5, 9 | cfv 6543 |
. . . . . 6
class
(distβπ€) |
11 | | ccau 24769 |
. . . . . 6
class
Cau |
12 | 10, 11 | cfv 6543 |
. . . . 5
class
(Cauβ(distβπ€)) |
13 | | cress 17172 |
. . . . 5
class
βΎs |
14 | 8, 12, 13 | co 7408 |
. . . 4
class ((π€ βs
β) βΎs (Cauβ(distβπ€))) |
15 | | vv |
. . . . 5
setvar π£ |
16 | 4 | cv 1540 |
. . . . . 6
class π |
17 | | cbs 17143 |
. . . . . 6
class
Base |
18 | 16, 17 | cfv 6543 |
. . . . 5
class
(Baseβπ) |
19 | | ve |
. . . . . 6
setvar π |
20 | | vf |
. . . . . . . . . . 11
setvar π |
21 | 20 | cv 1540 |
. . . . . . . . . 10
class π |
22 | | vg |
. . . . . . . . . . 11
setvar π |
23 | 22 | cv 1540 |
. . . . . . . . . 10
class π |
24 | 21, 23 | cpr 4630 |
. . . . . . . . 9
class {π, π} |
25 | 15 | cv 1540 |
. . . . . . . . 9
class π£ |
26 | 24, 25 | wss 3948 |
. . . . . . . 8
wff {π, π} β π£ |
27 | | vj |
. . . . . . . . . . . . 13
setvar π |
28 | 27 | cv 1540 |
. . . . . . . . . . . 12
class π |
29 | | cuz 12821 |
. . . . . . . . . . . 12
class
β€β₯ |
30 | 28, 29 | cfv 6543 |
. . . . . . . . . . 11
class
(β€β₯βπ) |
31 | 28, 23 | cfv 6543 |
. . . . . . . . . . . 12
class (πβπ) |
32 | | vx |
. . . . . . . . . . . . 13
setvar π₯ |
33 | 32 | cv 1540 |
. . . . . . . . . . . 12
class π₯ |
34 | | cbl 20930 |
. . . . . . . . . . . . 13
class
ball |
35 | 10, 34 | cfv 6543 |
. . . . . . . . . . . 12
class
(ballβ(distβπ€)) |
36 | 31, 33, 35 | co 7408 |
. . . . . . . . . . 11
class ((πβπ)(ballβ(distβπ€))π₯) |
37 | 21, 30 | cres 5678 |
. . . . . . . . . . 11
class (π βΎ
(β€β₯βπ)) |
38 | 30, 36, 37 | wf 6539 |
. . . . . . . . . 10
wff (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯) |
39 | | cz 12557 |
. . . . . . . . . 10
class
β€ |
40 | 38, 27, 39 | wrex 3070 |
. . . . . . . . 9
wff
βπ β
β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯) |
41 | | crp 12973 |
. . . . . . . . 9
class
β+ |
42 | 40, 32, 41 | wral 3061 |
. . . . . . . 8
wff
βπ₯ β
β+ βπ β β€ (π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯) |
43 | 26, 42 | wa 396 |
. . . . . . 7
wff ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯)) |
44 | 43, 20, 22 | copab 5210 |
. . . . . 6
class
{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} |
45 | 19 | cv 1540 |
. . . . . . . 8
class π |
46 | | cqus 17450 |
. . . . . . . 8
class
/s |
47 | 16, 45, 46 | co 7408 |
. . . . . . 7
class (π /s π) |
48 | | cnx 17125 |
. . . . . . . . . 10
class
ndx |
49 | 48, 9 | cfv 6543 |
. . . . . . . . 9
class
(distβndx) |
50 | | vp |
. . . . . . . . . . . . . . . . 17
setvar π |
51 | 50 | cv 1540 |
. . . . . . . . . . . . . . . 16
class π |
52 | 51, 45 | cec 8700 |
. . . . . . . . . . . . . . 15
class [π]π |
53 | 33, 52 | wceq 1541 |
. . . . . . . . . . . . . 14
wff π₯ = [π]π |
54 | | vy |
. . . . . . . . . . . . . . . 16
setvar π¦ |
55 | 54 | cv 1540 |
. . . . . . . . . . . . . . 15
class π¦ |
56 | | vq |
. . . . . . . . . . . . . . . . 17
setvar π |
57 | 56 | cv 1540 |
. . . . . . . . . . . . . . . 16
class π |
58 | 57, 45 | cec 8700 |
. . . . . . . . . . . . . . 15
class [π]π |
59 | 55, 58 | wceq 1541 |
. . . . . . . . . . . . . 14
wff π¦ = [π]π |
60 | 53, 59 | wa 396 |
. . . . . . . . . . . . 13
wff (π₯ = [π]π β§ π¦ = [π]π) |
61 | 16, 9 | cfv 6543 |
. . . . . . . . . . . . . . . 16
class
(distβπ) |
62 | 61 | cof 7667 |
. . . . . . . . . . . . . . 15
class
βf (distβπ) |
63 | 51, 57, 62 | co 7408 |
. . . . . . . . . . . . . 14
class (π βf
(distβπ)π) |
64 | | vz |
. . . . . . . . . . . . . . 15
setvar π§ |
65 | 64 | cv 1540 |
. . . . . . . . . . . . . 14
class π§ |
66 | | cli 15427 |
. . . . . . . . . . . . . 14
class
β |
67 | 63, 65, 66 | wbr 5148 |
. . . . . . . . . . . . 13
wff (π βf
(distβπ)π) β π§ |
68 | 60, 67 | wa 396 |
. . . . . . . . . . . 12
wff ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§) |
69 | 68, 56, 25 | wrex 3070 |
. . . . . . . . . . 11
wff
βπ β
π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§) |
70 | 69, 50, 25 | wrex 3070 |
. . . . . . . . . 10
wff
βπ β
π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§) |
71 | 70, 32, 54, 64 | coprab 7409 |
. . . . . . . . 9
class
{β¨β¨π₯,
π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)} |
72 | 49, 71 | cop 4634 |
. . . . . . . 8
class
β¨(distβndx), {β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β© |
73 | 72 | csn 4628 |
. . . . . . 7
class
{β¨(distβndx), {β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©} |
74 | | csts 17095 |
. . . . . . 7
class
sSet |
75 | 47, 73, 74 | co 7408 |
. . . . . 6
class ((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©}) |
76 | 19, 44, 75 | csb 3893 |
. . . . 5
class
β¦{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} / πβ¦((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©}) |
77 | 15, 18, 76 | csb 3893 |
. . . 4
class
β¦(Baseβπ) / π£β¦β¦{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} / πβ¦((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©}) |
78 | 4, 14, 77 | csb 3893 |
. . 3
class
β¦((π€
βs β) βΎs
(Cauβ(distβπ€)))
/ πβ¦β¦(Baseβπ) / π£β¦β¦{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} / πβ¦((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©}) |
79 | 2, 3, 78 | cmpt 5231 |
. 2
class (π€ β V β¦
β¦((π€
βs β) βΎs
(Cauβ(distβπ€)))
/ πβ¦β¦(Baseβπ) / π£β¦β¦{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} / πβ¦((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©})) |
80 | 1, 79 | wceq 1541 |
1
wff cplMetSp =
(π€ β V β¦
β¦((π€
βs β) βΎs
(Cauβ(distβπ€)))
/ πβ¦β¦(Baseβπ) / π£β¦β¦{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} / πβ¦((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©})) |