Detailed syntax breakdown of Definition df-homlimb
Step | Hyp | Ref
| Expression |
1 | | chlb 33591 |
. 2
class
HomLimB |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vv |
. . . 4
setvar 𝑣 |
5 | | vn |
. . . . 5
setvar 𝑛 |
6 | | cn 11973 |
. . . . 5
class
ℕ |
7 | 5 | cv 1538 |
. . . . . . 7
class 𝑛 |
8 | 7 | csn 4561 |
. . . . . 6
class {𝑛} |
9 | 2 | cv 1538 |
. . . . . . . 8
class 𝑓 |
10 | 7, 9 | cfv 6433 |
. . . . . . 7
class (𝑓‘𝑛) |
11 | 10 | cdm 5589 |
. . . . . 6
class dom
(𝑓‘𝑛) |
12 | 8, 11 | cxp 5587 |
. . . . 5
class ({𝑛} × dom (𝑓‘𝑛)) |
13 | 5, 6, 12 | ciun 4924 |
. . . 4
class ∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) |
14 | | ve |
. . . . 5
setvar 𝑒 |
15 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
16 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
17 | 16 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
18 | 15, 17 | wer 8495 |
. . . . . . . 8
wff 𝑠 Er 𝑣 |
19 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
20 | 19 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑥 |
21 | | c1st 7829 |
. . . . . . . . . . . . 13
class
1st |
22 | 20, 21 | cfv 6433 |
. . . . . . . . . . . 12
class
(1st ‘𝑥) |
23 | | c1 10872 |
. . . . . . . . . . . 12
class
1 |
24 | | caddc 10874 |
. . . . . . . . . . . 12
class
+ |
25 | 22, 23, 24 | co 7275 |
. . . . . . . . . . 11
class
((1st ‘𝑥) + 1) |
26 | | c2nd 7830 |
. . . . . . . . . . . . 13
class
2nd |
27 | 20, 26 | cfv 6433 |
. . . . . . . . . . . 12
class
(2nd ‘𝑥) |
28 | 22, 9 | cfv 6433 |
. . . . . . . . . . . 12
class (𝑓‘(1st
‘𝑥)) |
29 | 27, 28 | cfv 6433 |
. . . . . . . . . . 11
class ((𝑓‘(1st
‘𝑥))‘(2nd ‘𝑥)) |
30 | 25, 29 | cop 4567 |
. . . . . . . . . 10
class
〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉 |
31 | 19, 15, 30 | cmpt 5157 |
. . . . . . . . 9
class (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) |
32 | 31, 17 | wss 3887 |
. . . . . . . 8
wff (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠 |
33 | 18, 32 | wa 396 |
. . . . . . 7
wff (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠) |
34 | 33, 16 | cab 2715 |
. . . . . 6
class {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} |
35 | 34 | cint 4879 |
. . . . 5
class ∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} |
36 | 14 | cv 1538 |
. . . . . . 7
class 𝑒 |
37 | 15, 36 | cqs 8497 |
. . . . . 6
class (𝑣 / 𝑒) |
38 | 7, 20 | cop 4567 |
. . . . . . . . 9
class
〈𝑛, 𝑥〉 |
39 | 38, 36 | cec 8496 |
. . . . . . . 8
class
[〈𝑛, 𝑥〉]𝑒 |
40 | 19, 11, 39 | cmpt 5157 |
. . . . . . 7
class (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒) |
41 | 5, 6, 40 | cmpt 5157 |
. . . . . 6
class (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒)) |
42 | 37, 41 | cop 4567 |
. . . . 5
class
〈(𝑣 /
𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉 |
43 | 14, 35, 42 | csb 3832 |
. . . 4
class
⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉 |
44 | 4, 13, 43 | csb 3832 |
. . 3
class
⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉 |
45 | 2, 3, 44 | cmpt 5157 |
. 2
class (𝑓 ∈ V ↦
⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) |
46 | 1, 45 | wceq 1539 |
1
wff HomLimB =
(𝑓 ∈ V ↦
⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) |