Detailed syntax breakdown of Definition df-cpmat
Step | Hyp | Ref
| Expression |
1 | | ccpmat 21760 |
. 2
class
ConstPolyMat |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cfn 8691 |
. . 3
class
Fin |
5 | | cvv 3422 |
. . 3
class
V |
6 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
8 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
9 | 8 | cv 1538 |
. . . . . . . . . . 11
class 𝑖 |
10 | | vj |
. . . . . . . . . . . 12
setvar 𝑗 |
11 | 10 | cv 1538 |
. . . . . . . . . . 11
class 𝑗 |
12 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
13 | 12 | cv 1538 |
. . . . . . . . . . 11
class 𝑚 |
14 | 9, 11, 13 | co 7255 |
. . . . . . . . . 10
class (𝑖𝑚𝑗) |
15 | | cco1 21259 |
. . . . . . . . . 10
class
coe1 |
16 | 14, 15 | cfv 6418 |
. . . . . . . . 9
class
(coe1‘(𝑖𝑚𝑗)) |
17 | 7, 16 | cfv 6418 |
. . . . . . . 8
class
((coe1‘(𝑖𝑚𝑗))‘𝑘) |
18 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑟 |
19 | | c0g 17067 |
. . . . . . . . 9
class
0g |
20 | 18, 19 | cfv 6418 |
. . . . . . . 8
class
(0g‘𝑟) |
21 | 17, 20 | wceq 1539 |
. . . . . . 7
wff
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) |
22 | | cn 11903 |
. . . . . . 7
class
ℕ |
23 | 21, 6, 22 | wral 3063 |
. . . . . 6
wff
∀𝑘 ∈
ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) |
24 | 2 | cv 1538 |
. . . . . 6
class 𝑛 |
25 | 23, 10, 24 | wral 3063 |
. . . . 5
wff
∀𝑗 ∈
𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) |
26 | 25, 8, 24 | wral 3063 |
. . . 4
wff
∀𝑖 ∈
𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) |
27 | | cpl1 21258 |
. . . . . . 7
class
Poly1 |
28 | 18, 27 | cfv 6418 |
. . . . . 6
class
(Poly1‘𝑟) |
29 | | cmat 21464 |
. . . . . 6
class
Mat |
30 | 24, 28, 29 | co 7255 |
. . . . 5
class (𝑛 Mat
(Poly1‘𝑟)) |
31 | | cbs 16840 |
. . . . 5
class
Base |
32 | 30, 31 | cfv 6418 |
. . . 4
class
(Base‘(𝑛 Mat
(Poly1‘𝑟))) |
33 | 26, 12, 32 | crab 3067 |
. . 3
class {𝑚 ∈ (Base‘(𝑛 Mat
(Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)} |
34 | 2, 3, 4, 5, 33 | cmpo 7257 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)}) |
35 | 1, 34 | wceq 1539 |
1
wff
ConstPolyMat = (𝑛 ∈
Fin, 𝑟 ∈ V ↦
{𝑚 ∈
(Base‘(𝑛 Mat
(Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)}) |