| Metamath
Proof Explorer Theorem List (p. 225 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dmatsubcl 22401 | The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(-g‘𝐴)𝑌) ∈ 𝐷) | ||
| Theorem | dmatsgrp 22402 | The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) | ||
| Theorem | dmatmulcl 22403 | The product of two diagonal matrices is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝐷) | ||
| Theorem | dmatsrng 22404 | The set of diagonal matrices is a subring of the matrix ring/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) | ||
| Theorem | dmatcrng 22405 | The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing) | ||
| Theorem | dmatscmcl 22406 | The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑀 ∈ 𝐷)) → (𝐶 ∗ 𝑀) ∈ 𝐷) | ||
| Theorem | scmatval 22407* | The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) | ||
| Theorem | scmatel 22408* | An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) | ||
| Theorem | scmatscmid 22409* | A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) | ||
| Theorem | scmatscmide 22410 | An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) | ||
| Theorem | scmatscmiddistr 22411 | Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵)) → ((𝑆 ∗ 1 ) × (𝑇 ∗ 1 )) = ((𝑆 · 𝑇) ∗ 1 )) | ||
| Theorem | scmatmat 22412 | An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) | ||
| Theorem | scmate 22413* | An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) | ||
| Theorem | scmatmats 22414* | The set of an 𝑁 x 𝑁 scalar matrices over the ring 𝑅 expressed as a subset of 𝑁 x 𝑁 matrices over the ring 𝑅 with certain properties for their entries. (Contributed by AV, 31-Oct-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) | ||
| Theorem | scmateALT 22415* | Alternate proof of scmate 22413: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 22414 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) | ||
| Theorem | scmatscm 22416* | The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 ∀𝑚 ∈ 𝐵 (𝐶 × 𝑚) = (𝑐 ∗ 𝑚)) | ||
| Theorem | scmatid 22417 | The identity matrix is a scalar matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) | ||
| Theorem | scmatdmat 22418 | A scalar matrix is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐷)) | ||
| Theorem | scmataddcl 22419 | The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆) | ||
| Theorem | scmatsubcl 22420 | The difference of two scalar matrices is a scalar matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(-g‘𝐴)𝑌) ∈ 𝑆) | ||
| Theorem | scmatmulcl 22421 | The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝑆) | ||
| Theorem | scmatsgrp 22422 | The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐴)) | ||
| Theorem | scmatsrng 22423 | The set of scalar matrices is a subring of the matrix ring/algebra. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴)) | ||
| Theorem | scmatcrng 22424 | The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing) | ||
| Theorem | scmatsgrp1 22425 | The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) | ||
| Theorem | scmatsrng1 22426 | The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) | ||
| Theorem | smatvscl 22427 | Closure of the scalar multiplication in the ring of scalar matrices. (matvscl 22334 analog.) (Contributed by AV, 24-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑆)) → (𝐶 ∗ 𝑋) ∈ 𝑆) | ||
| Theorem | scmatlss 22428 | The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) | ||
| Theorem | scmatstrbas 22429 | The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶) | ||
| Theorem | scmatrhmval 22430* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) | ||
| Theorem | scmatrhmcl 22431* | The value of the ring homomorphism 𝐹 is a scalar matrix. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐶) | ||
| Theorem | scmatf 22432* | There is a function from a ring to any ring of scalar matrices over this ring. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) | ||
| Theorem | scmatfo 22433* | There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) | ||
| Theorem | scmatf1 22434* | There is a 1-1 function from a ring to any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1→𝐶) | ||
| Theorem | scmatf1o 22435* | There is a bijection between a ring and any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 26-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1-onto→𝐶) | ||
| Theorem | scmatghm 22436* | There is a group homomorphism from the additive group of a ring to the additive group of the ring of scalar matrices over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | scmatmhm 22437* | There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑇 = (mulGrp‘𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇)) | ||
| Theorem | scmatrhm 22438* | There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | scmatrngiso 22439* | There is a ring isomorphism from a ring to the ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingIso 𝑆)) | ||
| Theorem | scmatric 22440 | A ring is isomorphic to every ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ≃𝑟 𝑆) | ||
| Theorem | mat0scmat 22441 | The empty matrix over a ring is a scalar matrix (and therefore, by scmatdmat 22418, also a diagonal matrix). (Contributed by AV, 21-Dec-2019.) |
| ⊢ (𝑅 ∈ Ring → ∅ ∈ (∅ ScMat 𝑅)) | ||
| Theorem | mat1scmat 22442 | A 1-dimensional matrix over a ring is always a scalar matrix (and therefore, by scmatdmat 22418, also a diagonal matrix). (Contributed by AV, 21-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ (♯‘𝑁) = 1 ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝐵 → 𝑀 ∈ (𝑁 ScMat 𝑅))) | ||
The module of 𝑛-dimensional "column vectors" over a ring 𝑟 is the 𝑛-dimensional free module over a ring 𝑟, which is the product of 𝑛 -many copies of the ring with componentwise addition and multiplication. Although a "column vector" could also be defined as n x 1 -matrix (according to Wikipedia "Row and column vectors", 22-Feb-2019, https://en.wikipedia.org/wiki/Row_and_column_vectors: "In linear algebra, a column vector [... ] is an m x 1 matrix, that is, a matrix consisting of a single column of m elements"), which would allow for using the matrix multiplication df-mamu 22294 for multiplying a matrix with a column vector, it seems more natural to use the definition of a free (left) module, avoiding to provide a singleton as 1-dimensional index set for the column, and to introduce a new operator df-mvmul 22444 for the multiplication of a matrix with a column vector. In most cases, it is sufficient to regard members of ((Base‘𝑅) ↑m 𝑁) as "column vectors", because ((Base‘𝑅) ↑m 𝑁) is the base set of (𝑅 freeLMod 𝑁), see frlmbasmap 21684. See also the statements in [Lang] p. 508. | ||
| Syntax | cmvmul 22443 | Syntax for the operator for the multiplication of a vector with a matrix. |
| class maVecMul | ||
| Definition | df-mvmul 22444* | The operator which multiplies an M x N -matrix with an N-dimensional vector. (Contributed by AV, 23-Feb-2019.) |
| ⊢ maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ ⦋(1st ‘𝑜) / 𝑚⦌⦋(2nd ‘𝑜) / 𝑛⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖 ∈ 𝑚 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑦‘𝑗))))))) | ||
| Theorem | mvmulfval 22445* | Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019.) |
| ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → × = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦‘𝑗))))))) | ||
| Theorem | mvmulval 22446* | Multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
| ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) | ||
| Theorem | mvmulfv 22447* | A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
| ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) & ⊢ (𝜑 → 𝐼 ∈ 𝑀) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) | ||
| Theorem | mavmulval 22448* | Multiplication of a vector with a square matrix. (Contributed by AV, 23-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) | ||
| Theorem | mavmulfv 22449* | A cell/element in the vector resulting from a multiplication of a vector with a square matrix. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 18-Feb-2019.) (Revised by AV, 23-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) | ||
| Theorem | mavmulcl 22450 | Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 23-Feb-2019.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) | ||
| Theorem | 1mavmul 22451 | Multiplication of the identity NxN matrix with an N-dimensional vector results in the vector itself. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 23-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) ⇒ ⊢ (𝜑 → ((1r‘𝐴) · 𝑌) = 𝑌) | ||
| Theorem | mavmulass 22452 | Associativity of the multiplication of two NxN matrices with an N-dimensional vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 25-Feb-2019.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) & ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐴)) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌))) | ||
| Theorem | mavmuldm 22453 | The domain of the matrix vector multiplication function. (Contributed by AV, 27-Feb-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (𝐵 ↑m (𝑀 × 𝑁)) & ⊢ 𝐷 = (𝐵 ↑m 𝑁) & ⊢ · = (𝑅 maVecMul 〈𝑀, 𝑁〉) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷)) | ||
| Theorem | mavmulsolcl 22454 | Every solution of the equation 𝐴∗𝑋 = 𝑌 for a matrix 𝐴 and a vector 𝐵 is a vector. (Contributed by AV, 27-Feb-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (𝐵 ↑m (𝑀 × 𝑁)) & ⊢ 𝐷 = (𝐵 ↑m 𝑁) & ⊢ · = (𝑅 maVecMul 〈𝑀, 𝑁〉) & ⊢ 𝐸 = (𝐵 ↑m 𝑀) ⇒ ⊢ (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐸)) → ((𝐴 · 𝑋) = 𝑌 → 𝑋 ∈ 𝐷)) | ||
| Theorem | mavmul0 22455 | Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.) |
| ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) | ||
| Theorem | mavmul0g 22456 | The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.) |
| ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑋 · 𝑌) = ∅) | ||
| Theorem | mvmumamul1 22457* | The multiplication of an MxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an MxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.) |
| ⊢ × = (𝑅 maMul 〈𝑀, 𝑁, {∅}〉) & ⊢ · = (𝑅 maVecMul 〈𝑀, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) ⇒ ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))) | ||
| Theorem | mavmumamul1 22458* | The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, {∅}〉) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) ⇒ ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅))) | ||
| Syntax | cmarrep 22459 | Syntax for the row replacing function for a square matrix. |
| class matRRep | ||
| Syntax | cmatrepV 22460 | Syntax for the function replacing a column of a matrix by a vector. |
| class matRepV | ||
| Definition | df-marrep 22461* | Define the matrices whose k-th row is replaced by 0's and an arbitrary element of the underlying ring at the l-th column. (Contributed by AV, 12-Feb-2019.) |
| ⊢ matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)))))) | ||
| Definition | df-marepv 22462* | Function replacing a column of a matrix by a vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) | ||
| Theorem | marrepfval 22463* | First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRRep 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) | ||
| Theorem | marrepval0 22464* | Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRRep 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) | ||
| Theorem | marrepval 22465* | Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRRep 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) | ||
| Theorem | marrepeval 22466 | An entry of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRRep 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑀𝑄𝑆)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽))) | ||
| Theorem | marrepcl 22467 | Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵) | ||
| Theorem | marepvfval 22468* | First substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRepV 𝑅) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) ⇒ ⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) | ||
| Theorem | marepvval0 22469* | Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRepV 𝑅) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) | ||
| Theorem | marepvval 22470* | Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRepV 𝑅) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) | ||
| Theorem | marepveval 22471 | An entry of a matrix with a replaced column. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 matRepV 𝑅) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) | ||
| Theorem | marepvcl 22472 | Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) | ||
| Theorem | ma1repvcl 22473 | Closure of the column replacement function for identity matrices. (Contributed by AV, 15-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘𝐴) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) | ||
| Theorem | ma1repveval 22474 | An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) | ||
| Theorem | mulmarep1el 22475 | Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) | ||
| Theorem | mulmarep1gsum1 22476* | The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽)) | ||
| Theorem | mulmarep1gsum2 22477* | The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) & ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | ||
| Theorem | 1marepvmarrepid 22478 | Replacing the ith row by 0's and the ith component of a (column) vector at the diagonal position for the identity matrix with the ith column replaced by the vector results in the matrix itself. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
| ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) & ⊢ 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼) = 𝑋) | ||
| Syntax | csubma 22479 | Syntax for submatrices of a square matrix. |
| class subMat | ||
| Definition | df-subma 22480* | Define the submatrices of a square matrix. A submatrix is obtained by deleting a row and a column of the original matrix. Since the indices of a matrix need not to be sequential integers, it does not matter that there may be gaps in the numbering of the indices for the submatrix. The determinants of such submatrices are called the "minors" of the original matrix. (Contributed by AV, 27-Dec-2018.) |
| ⊢ subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) | ||
| Theorem | submabas 22481* | Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) | ||
| Theorem | submafval 22482* | First substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ 𝑄 = (𝑚 ∈ 𝐵 ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) | ||
| Theorem | submaval0 22483* | Second substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)))) | ||
| Theorem | submaval 22484* | Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) | ||
| Theorem | submaeval 22485 | An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = (𝐼𝑀𝐽)) | ||
| Theorem | 1marepvsma1 22486 | The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
| ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) & ⊢ 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) | ||
| Syntax | cmdat 22487 | Syntax for the matrix determinant function. |
| class maDet | ||
| Definition | df-mdet 22488* | Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 22490). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 22498. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 22505, the homogeneity by mdetrsca 22506. Furthermore, it is shown that the determinant function is alternating (see mdetralt 22511) and normalized (see mdet1 22504). Finally, uniqueness is shown by mdetuni 22525. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 22490. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.) |
| ⊢ maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) | ||
| Theorem | mdetfval 22489* | First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) | ||
| Theorem | mdetleib 22490* | Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) | ||
| Theorem | mdetleib2 22491* | Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))))))) | ||
| Theorem | nfimdetndef 22492 | The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) ⇒ ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) | ||
| Theorem | mdetfval1 22493* | First substitution of an alternative determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by AV, 27-Dec-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) | ||
| Theorem | mdetleib1 22494* | Full substitution of an alternative determinant definition (also known as Leibniz' Formula). (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by AV, 26-Dec-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) | ||
| Theorem | mdet0pr 22495 | The determinant function for 0-dimensional matrices on a given ring is the function mapping the empty set to the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅) = {〈∅, (1r‘𝑅)〉}) | ||
| Theorem | mdet0f1o 22496 | The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅):{∅}–1-1-onto→{(1r‘𝑅)}) | ||
| Theorem | mdet0fv0 22497 | The determinant of the empty matrix on a given ring is the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| ⊢ (𝑅 ∈ Ring → ((∅ maDet 𝑅)‘∅) = (1r‘𝑅)) | ||
| Theorem | mdetf 22498 | Functionality of the determinant, see also definition in [Lang] p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶𝐾) | ||
| Theorem | mdetcl 22499 | The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by AV, 7-Feb-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) ∈ 𝐾) | ||
| Theorem | m1detdiag 22500 | The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝐼𝑀𝐼)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |