Home | Metamath
Proof Explorer Theorem List (p. 225 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pnrmcld 22401* | A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) | ||
Theorem | pnrmopn 22402* | An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ∪ ran 𝑓) | ||
Theorem | ist0-2 22403* | The predicate "is a T0 space". (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
Theorem | ist0-3 22404* | The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) | ||
Theorem | cnt0 22405 | The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2) | ||
Theorem | ist1-2 22406* | An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
Theorem | t1t0 22407 | A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | ||
Theorem | ist1-3 22408* | A space is T1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∩ {𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜} = {𝑥})) | ||
Theorem | cnt1 22409 | The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre) | ||
Theorem | ishaus2 22410* | Express the predicate "𝐽 is a Hausdorff space." (Contributed by NM, 8-Mar-2007.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
Theorem | haust1 22411 | A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | ||
Theorem | hausnei2 22412* | The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | ||
Theorem | cnhaus 22413 | The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus) | ||
Theorem | nrmsep3 22414* | In a normal space, given a closed set 𝐵 inside an open set 𝐴, there is an open set 𝑥 such that 𝐵 ⊆ 𝑥 ⊆ cls(𝑥) ⊆ 𝐴. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐽 ∈ Nrm ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) | ||
Theorem | nrmsep2 22415* | In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) | ||
Theorem | nrmsep 22416* | In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.) |
⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
Theorem | isnrm2 22417* | An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))) | ||
Theorem | isnrm3 22418* | A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) | ||
Theorem | cnrmi 22419 | A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) | ||
Theorem | cnrmnrm 22420 | A completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Nrm) | ||
Theorem | restcnrm 22421 | A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) | ||
Theorem | resthauslem 22422 | Lemma for resthaus 22427 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) | ||
Theorem | lpcls 22423 | The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) | ||
Theorem | perfcls 22424 | A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) | ||
Theorem | restt0 22425 | A subspace of a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐽 ∈ Kol2 ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Kol2) | ||
Theorem | restt1 22426 | A subspace of a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Fre) | ||
Theorem | resthaus 22427 | A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) | ||
Theorem | t1sep2 22428* | Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) | ||
Theorem | t1sep 22429* | Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜)) | ||
Theorem | sncld 22430 | A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) | ||
Theorem | sshauslem 22431 | Lemma for sshaus 22434 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) | ||
Theorem | sst0 22432 | A topology finer than a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Kol2) | ||
Theorem | sst1 22433 | A topology finer than a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Fre) | ||
Theorem | sshaus 22434 | A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | ||
Theorem | regsep2 22435* | In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
Theorem | isreg2 22436* | A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) | ||
Theorem | dnsconst 22437 | If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 6915). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) | ||
Theorem | ordtt1 22438 | The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre) | ||
Theorem | lmmo 22439 | A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | lmfun 22440 | The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | ||
Theorem | dishaus 22441 | A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) | ||
Theorem | ordthauslem 22442* | Lemma for ordthaus 22443. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | ||
Theorem | ordthaus 22443 | The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus) | ||
Theorem | xrhaus 22444 | The topology of the extended reals is Hausdorff. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ (ordTop‘ ≤ ) ∈ Haus | ||
Syntax | ccmp 22445 | Extend class notation with the class of all compact spaces. |
class Comp | ||
Definition | df-cmp 22446* | Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of [BourbakiTop1] p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008.) |
⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | ||
Theorem | iscmp 22447* | The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
Theorem | cmpcov 22448* | An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) | ||
Theorem | cmpcov2 22449* | Rewrite cmpcov 22448 for the cover {𝑦 ∈ 𝐽 ∣ 𝜑}. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) | ||
Theorem | cmpcovf 22450* | Combine cmpcov 22448 with ac6sfi 8988 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝑧 = (𝑓‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) | ||
Theorem | cncmp 22451 | Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) | ||
Theorem | fincmp 22452 | A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) | ||
Theorem | 0cmp 22453 | The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.) |
⊢ {∅} ∈ Comp | ||
Theorem | cmptop 22454 | A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | ||
Theorem | rncmp 22455 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | ||
Theorem | imacmp 22456 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) | ||
Theorem | discmp 22457 | A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp) | ||
Theorem | cmpsublem 22458* | Lemma for cmpsub 22459. (Contributed by Jeff Hankins, 28-Jun-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)(∪ (𝐽 ↾t 𝑆) = ∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽 ↾t 𝑆) = ∪ 𝑡))) | ||
Theorem | cmpsub 22459* | Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | ||
Theorem | tgcmp 22460* | A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 23104, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
Theorem | cmpcld 22461 | A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.) |
⊢ ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝑆) ∈ Comp) | ||
Theorem | uncmp 22462 | The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp) | ||
Theorem | fiuncmp 22463* | A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝐽 ↾t 𝐵) ∈ Comp) → (𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵) ∈ Comp) | ||
Theorem | sscmp 22464 | A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Comp) | ||
Theorem | hauscmplem 22465* | Lemma for hauscmp 22466. (Contributed by Mario Carneiro, 27-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) & ⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) | ||
Theorem | hauscmp 22466 | A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | cmpfi 22467* | If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | ||
Theorem | cmpfii 22468 | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) | ||
Theorem | bwth 22469* | The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴)) | ||
Syntax | cconn 22470 | Extend class notation with the class of all connected topologies. |
class Conn | ||
Definition | df-conn 22471 | Topologies are connected when only ∅ and ∪ 𝑗 are both open and closed. (Contributed by FL, 17-Nov-2008.) |
⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | ||
Theorem | isconn 22472 | The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) | ||
Theorem | isconn2 22473 | The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) | ||
Theorem | connclo 22474 | The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 = 𝑋) | ||
Theorem | conndisj 22475 | If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≠ 𝑋) | ||
Theorem | conntop 22476 | A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | ||
Theorem | indisconn 22477 | The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ {∅, 𝐴} ∈ Conn | ||
Theorem | dfconn2 22478* | An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) | ||
Theorem | connsuba 22479* | Connectedness for a subspace. See connsub 22480. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | ||
Theorem | connsub 22480* | Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) | ||
Theorem | cnconn 22481 | Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) | ||
Theorem | nconnsubb 22482 | Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑈 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → (𝑉 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → ((𝑈 ∩ 𝑉) ∩ 𝐴) = ∅) & ⊢ (𝜑 → 𝐴 ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → ¬ (𝐽 ↾t 𝐴) ∈ Conn) | ||
Theorem | connsubclo 22483 | If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | connima 22484 | The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) | ||
Theorem | conncn 22485 | A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑈 ∈ 𝐾) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) | ||
Theorem | iunconnlem 22486* | Lemma for iunconn 22487. (Contributed by Mario Carneiro, 11-Jun-2014.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑈 ∪ 𝑉)) & ⊢ Ⅎ𝑘𝜑 ⇒ ⊢ (𝜑 → ¬ 𝑃 ∈ 𝑈) | ||
Theorem | iunconn 22487* | The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
Theorem | unconn 22488 | The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) | ||
Theorem | clsconn 22489 | The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) | ||
Theorem | conncompid 22490* | The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) | ||
Theorem | conncompconn 22491* | The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) | ||
Theorem | conncompss 22492* | The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) | ||
Theorem | conncompcld 22493* | The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | conncompclo 22494* | The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) | ||
Theorem | t1connperf 22495 | A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) | ||
Syntax | c1stc 22496 | Extend class definition to include the class of all first-countable topologies. |
class 1stω | ||
Syntax | c2ndc 22497 | Extend class definition to include the class of all second-countable topologies. |
class 2ndω | ||
Definition | df-1stc 22498* | Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | ||
Definition | df-2ndc 22499* | Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010.) |
⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | ||
Theorem | is1stc 22500* | The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |