Step | Hyp | Ref
| Expression |
1 | | cpmat.s |
. 2
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
2 | | df-cpmat 21763 |
. . . 4
⊢
ConstPolyMat = (𝑛 ∈
Fin, 𝑟 ∈ V ↦
{𝑚 ∈
(Base‘(𝑛 Mat
(Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)}) |
3 | 2 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)})) |
4 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
5 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
6 | 5 | adantl 481 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
7 | 4, 6 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat (Poly1‘𝑟)) = (𝑁 Mat (Poly1‘𝑅))) |
8 | 7 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1‘𝑟))) = (Base‘(𝑁 Mat
(Poly1‘𝑅)))) |
9 | | cpmat.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
10 | | cpmat.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
11 | | cpmat.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
12 | 11 | oveq2i 7266 |
. . . . . . . . 9
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1‘𝑅)) |
13 | 10, 12 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐶 = (𝑁 Mat (Poly1‘𝑅)) |
14 | 13 | fveq2i 6759 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘(𝑁 Mat
(Poly1‘𝑅))) |
15 | 9, 14 | eqtri 2766 |
. . . . . 6
⊢ 𝐵 = (Base‘(𝑁 Mat
(Poly1‘𝑅))) |
16 | 8, 15 | eqtr4di 2797 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1‘𝑟))) = 𝐵) |
17 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
18 | 17 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = (0g‘𝑅)) |
19 | 18 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) ↔ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅))) |
20 | 19 | ralbidv 3120 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) ↔ ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅))) |
21 | 4, 20 | raleqbidv 3327 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) ↔ ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅))) |
22 | 4, 21 | raleqbidv 3327 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅))) |
23 | 16, 22 | rabeqbidv 3410 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
24 | 23 | adantl 481 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
25 | | simpl 482 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
26 | | elex 3440 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
27 | 26 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
28 | 9 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
29 | | rabexg 5250 |
. . . 4
⊢ (𝐵 ∈ V → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ∈ V) |
30 | 28, 29 | mp1i 13 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ∈ V) |
31 | 3, 24, 25, 27, 30 | ovmpod 7403 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 ConstPolyMat 𝑅) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
32 | 1, 31 | eqtrid 2790 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |