MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmat Structured version   Visualization version   GIF version

Theorem cpmat 21858
Description: Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all 𝑁 x 𝑁 matrices of polynomials over a ring 𝑅. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑘,𝑚   𝑅,𝑖,𝑗,𝑘,𝑚
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘,𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚)   𝑆(𝑖,𝑗,𝑘,𝑚)   𝑉(𝑖,𝑗,𝑘,𝑚)

Proof of Theorem cpmat
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . 2 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 df-cpmat 21855 . . . 4 ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)}))
4 simpl 483 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
5 fveq2 6774 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
65adantl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1𝑟) = (Poly1𝑅))
74, 6oveq12d 7293 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat (Poly1𝑟)) = (𝑁 Mat (Poly1𝑅)))
87fveq2d 6778 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = (Base‘(𝑁 Mat (Poly1𝑅))))
9 cpmat.b . . . . . . 7 𝐵 = (Base‘𝐶)
10 cpmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 cpmat.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1211oveq2i 7286 . . . . . . . . 9 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
1310, 12eqtri 2766 . . . . . . . 8 𝐶 = (𝑁 Mat (Poly1𝑅))
1413fveq2i 6777 . . . . . . 7 (Base‘𝐶) = (Base‘(𝑁 Mat (Poly1𝑅)))
159, 14eqtri 2766 . . . . . 6 𝐵 = (Base‘(𝑁 Mat (Poly1𝑅)))
168, 15eqtr4di 2796 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
17 fveq2 6774 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1817adantl 482 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = (0g𝑅))
1918eqeq2d 2749 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
2019ralbidv 3112 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
214, 20raleqbidv 3336 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
224, 21raleqbidv 3336 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
2316, 22rabeqbidv 3420 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
2423adantl 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
25 simpl 483 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
26 elex 3450 . . . 4 (𝑅𝑉𝑅 ∈ V)
2726adantl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
289fvexi 6788 . . . 4 𝐵 ∈ V
29 rabexg 5255 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ∈ V)
3028, 29mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ∈ V)
313, 24, 25, 27, 30ovmpod 7425 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ConstPolyMat 𝑅) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
321, 31eqtrid 2790 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733  cn 11973  Basecbs 16912  0gc0g 17150  Poly1cpl1 21348  coe1cco1 21349   Mat cmat 21554   ConstPolyMat ccpmat 21852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-cpmat 21855
This theorem is referenced by:  cpmatpmat  21859  cpmatel  21860  cpmatsubgpmat  21869
  Copyright terms: Public domain W3C validator