MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmat Structured version   Visualization version   GIF version

Theorem cpmat 22081
Description: Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all 𝑁 x 𝑁 matrices of polynomials over a ring 𝑅. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑘,𝑚   𝑅,𝑖,𝑗,𝑘,𝑚
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘,𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚)   𝑆(𝑖,𝑗,𝑘,𝑚)   𝑉(𝑖,𝑗,𝑘,𝑚)

Proof of Theorem cpmat
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . 2 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 df-cpmat 22078 . . . 4 ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)}))
4 simpl 484 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
5 fveq2 6846 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
65adantl 483 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1𝑟) = (Poly1𝑅))
74, 6oveq12d 7379 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat (Poly1𝑟)) = (𝑁 Mat (Poly1𝑅)))
87fveq2d 6850 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = (Base‘(𝑁 Mat (Poly1𝑅))))
9 cpmat.b . . . . . . 7 𝐵 = (Base‘𝐶)
10 cpmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 cpmat.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1211oveq2i 7372 . . . . . . . . 9 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
1310, 12eqtri 2761 . . . . . . . 8 𝐶 = (𝑁 Mat (Poly1𝑅))
1413fveq2i 6849 . . . . . . 7 (Base‘𝐶) = (Base‘(𝑁 Mat (Poly1𝑅)))
159, 14eqtri 2761 . . . . . 6 𝐵 = (Base‘(𝑁 Mat (Poly1𝑅)))
168, 15eqtr4di 2791 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
17 fveq2 6846 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1817adantl 483 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = (0g𝑅))
1918eqeq2d 2744 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
2019ralbidv 3171 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
214, 20raleqbidv 3318 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
224, 21raleqbidv 3318 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
2316, 22rabeqbidv 3423 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
2423adantl 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
25 simpl 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
26 elex 3465 . . . 4 (𝑅𝑉𝑅 ∈ V)
2726adantl 483 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
289fvexi 6860 . . . 4 𝐵 ∈ V
29 rabexg 5292 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ∈ V)
3028, 29mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ∈ V)
313, 24, 25, 27, 30ovmpod 7511 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ConstPolyMat 𝑅) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
321, 31eqtrid 2785 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061  {crab 3406  Vcvv 3447  cfv 6500  (class class class)co 7361  cmpo 7363  Fincfn 8889  cn 12161  Basecbs 17091  0gc0g 17329  Poly1cpl1 21571  coe1cco1 21572   Mat cmat 21777   ConstPolyMat ccpmat 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-iota 6452  df-fun 6502  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-cpmat 22078
This theorem is referenced by:  cpmatpmat  22082  cpmatel  22083  cpmatsubgpmat  22092
  Copyright terms: Public domain W3C validator