MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmat Structured version   Visualization version   GIF version

Theorem cpmat 22625
Description: Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all 𝑁 x 𝑁 matrices of polynomials over a ring 𝑅. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑘,𝑚   𝑅,𝑖,𝑗,𝑘,𝑚
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘,𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚)   𝑆(𝑖,𝑗,𝑘,𝑚)   𝑉(𝑖,𝑗,𝑘,𝑚)

Proof of Theorem cpmat
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . 2 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 df-cpmat 22622 . . . 4 ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)}))
4 simpl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
5 fveq2 6828 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
65adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1𝑟) = (Poly1𝑅))
74, 6oveq12d 7370 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat (Poly1𝑟)) = (𝑁 Mat (Poly1𝑅)))
87fveq2d 6832 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = (Base‘(𝑁 Mat (Poly1𝑅))))
9 cpmat.b . . . . . . 7 𝐵 = (Base‘𝐶)
10 cpmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 cpmat.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1211oveq2i 7363 . . . . . . . . 9 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
1310, 12eqtri 2756 . . . . . . . 8 𝐶 = (𝑁 Mat (Poly1𝑅))
1413fveq2i 6831 . . . . . . 7 (Base‘𝐶) = (Base‘(𝑁 Mat (Poly1𝑅)))
159, 14eqtri 2756 . . . . . 6 𝐵 = (Base‘(𝑁 Mat (Poly1𝑅)))
168, 15eqtr4di 2786 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
17 fveq2 6828 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1817adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = (0g𝑅))
1918eqeq2d 2744 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
2019ralbidv 3156 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
214, 20raleqbidv 3313 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
224, 21raleqbidv 3313 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟) ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)))
2316, 22rabeqbidv 3414 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
2423adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
25 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
26 elex 3458 . . . 4 (𝑅𝑉𝑅 ∈ V)
2726adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
289fvexi 6842 . . . 4 𝐵 ∈ V
29 rabexg 5277 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ∈ V)
3028, 29mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ∈ V)
313, 24, 25, 27, 30ovmpod 7504 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ConstPolyMat 𝑅) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
321, 31eqtrid 2780 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  cfv 6486  (class class class)co 7352  cmpo 7354  Fincfn 8875  cn 12132  Basecbs 17122  0gc0g 17345  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323   ConstPolyMat ccpmat 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-cpmat 22622
This theorem is referenced by:  cpmatpmat  22626  cpmatel  22627  cpmatsubgpmat  22636
  Copyright terms: Public domain W3C validator