![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-csc | Structured version Visualization version GIF version |
Description: Define the cosecant function. We define it this way for cmpt 5004, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). The csc function is defined in ISO 80000-2:2009(E) operation 2-13.7 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 (Contributed by David A. Wheeler, 14-Mar-2014.) |
Ref | Expression |
---|---|
df-csc | ⊢ csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccsc 44233 | . 2 class csc | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . . . . . 7 setvar 𝑦 | |
4 | 3 | cv 1506 | . . . . . 6 class 𝑦 |
5 | csin 15275 | . . . . . 6 class sin | |
6 | 4, 5 | cfv 6185 | . . . . 5 class (sin‘𝑦) |
7 | cc0 10333 | . . . . 5 class 0 | |
8 | 6, 7 | wne 2961 | . . . 4 wff (sin‘𝑦) ≠ 0 |
9 | cc 10331 | . . . 4 class ℂ | |
10 | 8, 3, 9 | crab 3086 | . . 3 class {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} |
11 | c1 10334 | . . . 4 class 1 | |
12 | 2 | cv 1506 | . . . . 5 class 𝑥 |
13 | 12, 5 | cfv 6185 | . . . 4 class (sin‘𝑥) |
14 | cdiv 11096 | . . . 4 class / | |
15 | 11, 13, 14 | co 6974 | . . 3 class (1 / (sin‘𝑥)) |
16 | 2, 10, 15 | cmpt 5004 | . 2 class (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) |
17 | 1, 16 | wceq 1507 | 1 wff csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: cscval 44239 |
Copyright terms: Public domain | W3C validator |