| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-csc | Structured version Visualization version GIF version | ||
| Description: Define the cosecant function. We define it this way for cmpt 5206, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). The csc function is defined in ISO 80000-2:2009(E) operation 2-13.7 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 5206. (Contributed by David A. Wheeler, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| df-csc | ⊢ csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccsc 49573 | . 2 class csc | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . . . . . 7 setvar 𝑦 | |
| 4 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 5 | csin 16084 | . . . . . 6 class sin | |
| 6 | 4, 5 | cfv 6536 | . . . . 5 class (sin‘𝑦) |
| 7 | cc0 11134 | . . . . 5 class 0 | |
| 8 | 6, 7 | wne 2933 | . . . 4 wff (sin‘𝑦) ≠ 0 |
| 9 | cc 11132 | . . . 4 class ℂ | |
| 10 | 8, 3, 9 | crab 3420 | . . 3 class {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} |
| 11 | c1 11135 | . . . 4 class 1 | |
| 12 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 13 | 12, 5 | cfv 6536 | . . . 4 class (sin‘𝑥) |
| 14 | cdiv 11899 | . . . 4 class / | |
| 15 | 11, 13, 14 | co 7410 | . . 3 class (1 / (sin‘𝑥)) |
| 16 | 2, 10, 15 | cmpt 5206 | . 2 class (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) |
| 17 | 1, 16 | wceq 1540 | 1 wff csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cscval 49579 |
| Copyright terms: Public domain | W3C validator |