Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-cot | Structured version Visualization version GIF version |
Description: Define the cotangent function. We define it this way for cmpt 5135, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). The cot function is defined in ISO 80000-2:2009(E) operation 2-13.5 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 5135. (Contributed by David A. Wheeler, 14-Mar-2014.) |
Ref | Expression |
---|---|
df-cot | ⊢ cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccot 46116 | . 2 class cot | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . . . . . 7 setvar 𝑦 | |
4 | 3 | cv 1542 | . . . . . 6 class 𝑦 |
5 | csin 15625 | . . . . . 6 class sin | |
6 | 4, 5 | cfv 6380 | . . . . 5 class (sin‘𝑦) |
7 | cc0 10729 | . . . . 5 class 0 | |
8 | 6, 7 | wne 2940 | . . . 4 wff (sin‘𝑦) ≠ 0 |
9 | cc 10727 | . . . 4 class ℂ | |
10 | 8, 3, 9 | crab 3065 | . . 3 class {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} |
11 | 2 | cv 1542 | . . . . 5 class 𝑥 |
12 | ccos 15626 | . . . . 5 class cos | |
13 | 11, 12 | cfv 6380 | . . . 4 class (cos‘𝑥) |
14 | 11, 5 | cfv 6380 | . . . 4 class (sin‘𝑥) |
15 | cdiv 11489 | . . . 4 class / | |
16 | 13, 14, 15 | co 7213 | . . 3 class ((cos‘𝑥) / (sin‘𝑥)) |
17 | 2, 10, 16 | cmpt 5135 | . 2 class (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥))) |
18 | 1, 17 | wceq 1543 | 1 wff cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: cotval 46122 |
Copyright terms: Public domain | W3C validator |