| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cscval | Structured version Visualization version GIF version | ||
| Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| cscval | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴)) | |
| 2 | 1 | neeq1d 2984 | . . 3 ⊢ (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0)) |
| 3 | 2 | elrab 3650 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) |
| 4 | fveq2 6826 | . . . 4 ⊢ (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴)) | |
| 5 | 4 | oveq2d 7369 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (sin‘𝑥)) = (1 / (sin‘𝐴))) |
| 6 | df-csc 49731 | . . 3 ⊢ csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) | |
| 7 | ovex 7386 | . . 3 ⊢ (1 / (sin‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6934 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (csc‘𝐴) = (1 / (sin‘𝐴))) |
| 9 | 3, 8 | sylbir 235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 / cdiv 11795 sincsin 15988 cscccsc 49728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-csc 49731 |
| This theorem is referenced by: csccl 49737 recsccl 49740 reccsc 49743 cotsqcscsq 49748 |
| Copyright terms: Public domain | W3C validator |