![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cscval | Structured version Visualization version GIF version |
Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
Ref | Expression |
---|---|
cscval | β’ ((π΄ β β β§ (sinβπ΄) β 0) β (cscβπ΄) = (1 / (sinβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 β’ (π¦ = π΄ β (sinβπ¦) = (sinβπ΄)) | |
2 | 1 | neeq1d 3000 | . . 3 β’ (π¦ = π΄ β ((sinβπ¦) β 0 β (sinβπ΄) β 0)) |
3 | 2 | elrab 3683 | . 2 β’ (π΄ β {π¦ β β β£ (sinβπ¦) β 0} β (π΄ β β β§ (sinβπ΄) β 0)) |
4 | fveq2 6891 | . . . 4 β’ (π₯ = π΄ β (sinβπ₯) = (sinβπ΄)) | |
5 | 4 | oveq2d 7424 | . . 3 β’ (π₯ = π΄ β (1 / (sinβπ₯)) = (1 / (sinβπ΄))) |
6 | df-csc 47780 | . . 3 β’ csc = (π₯ β {π¦ β β β£ (sinβπ¦) β 0} β¦ (1 / (sinβπ₯))) | |
7 | ovex 7441 | . . 3 β’ (1 / (sinβπ΄)) β V | |
8 | 5, 6, 7 | fvmpt 6998 | . 2 β’ (π΄ β {π¦ β β β£ (sinβπ¦) β 0} β (cscβπ΄) = (1 / (sinβπ΄))) |
9 | 3, 8 | sylbir 234 | 1 β’ ((π΄ β β β§ (sinβπ΄) β 0) β (cscβπ΄) = (1 / (sinβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 {crab 3432 βcfv 6543 (class class class)co 7408 βcc 11107 0cc0 11109 1c1 11110 / cdiv 11870 sincsin 16006 cscccsc 47777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-csc 47780 |
This theorem is referenced by: csccl 47786 recsccl 47789 reccsc 47792 cotsqcscsq 47797 |
Copyright terms: Public domain | W3C validator |