Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cscval Structured version   Visualization version   GIF version

Theorem cscval 49104
Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cscval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))

Proof of Theorem cscval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6914 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 3000 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3698 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6914 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
54oveq2d 7454 . . 3 (𝑥 = 𝐴 → (1 / (sin‘𝑥)) = (1 / (sin‘𝐴)))
6 df-csc 49101 . . 3 csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
7 ovex 7471 . . 3 (1 / (sin‘𝐴)) ∈ V
85, 6, 7fvmpt 7023 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (csc‘𝐴) = (1 / (sin‘𝐴)))
93, 8sylbir 235 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2940  {crab 3436  cfv 6569  (class class class)co 7438  cc 11160  0cc0 11162  1c1 11163   / cdiv 11927  sincsin 16105  cscccsc 49098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-csc 49101
This theorem is referenced by:  csccl  49107  recsccl  49110  reccsc  49113  cotsqcscsq  49118
  Copyright terms: Public domain W3C validator