Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cscval Structured version   Visualization version   GIF version

Theorem cscval 48758
Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cscval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))

Proof of Theorem cscval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6919 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 3002 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3703 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6919 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
54oveq2d 7461 . . 3 (𝑥 = 𝐴 → (1 / (sin‘𝑥)) = (1 / (sin‘𝐴)))
6 df-csc 48755 . . 3 csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
7 ovex 7478 . . 3 (1 / (sin‘𝐴)) ∈ V
85, 6, 7fvmpt 7027 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (csc‘𝐴) = (1 / (sin‘𝐴)))
93, 8sylbir 235 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  wne 2942  {crab 3438  cfv 6572  (class class class)co 7445  cc 11178  0cc0 11180  1c1 11181   / cdiv 11943  sincsin 16105  cscccsc 48752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-iota 6524  df-fun 6574  df-fv 6580  df-ov 7448  df-csc 48755
This theorem is referenced by:  csccl  48761  recsccl  48764  reccsc  48767  cotsqcscsq  48772
  Copyright terms: Public domain W3C validator