Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cscval Structured version   Visualization version   GIF version

Theorem cscval 46450
Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cscval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))

Proof of Theorem cscval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 3003 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3624 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6774 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
54oveq2d 7291 . . 3 (𝑥 = 𝐴 → (1 / (sin‘𝑥)) = (1 / (sin‘𝐴)))
6 df-csc 46447 . . 3 csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
7 ovex 7308 . . 3 (1 / (sin‘𝐴)) ∈ V
85, 6, 7fvmpt 6875 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (csc‘𝐴) = (1 / (sin‘𝐴)))
93, 8sylbir 234 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   / cdiv 11632  sincsin 15773  cscccsc 46444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-csc 46447
This theorem is referenced by:  csccl  46453  recsccl  46456  reccsc  46459  cotsqcscsq  46464
  Copyright terms: Public domain W3C validator