| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cscval | Structured version Visualization version GIF version | ||
| Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| cscval | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . 4 ⊢ (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴)) | |
| 2 | 1 | neeq1d 2990 | . . 3 ⊢ (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0)) |
| 3 | 2 | elrab 3675 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) |
| 4 | fveq2 6886 | . . . 4 ⊢ (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴)) | |
| 5 | 4 | oveq2d 7429 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (sin‘𝑥)) = (1 / (sin‘𝐴))) |
| 6 | df-csc 49272 | . . 3 ⊢ csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥))) | |
| 7 | ovex 7446 | . . 3 ⊢ (1 / (sin‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6996 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (csc‘𝐴) = (1 / (sin‘𝐴))) |
| 9 | 3, 8 | sylbir 235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {crab 3419 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 / cdiv 11902 sincsin 16081 cscccsc 49269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-csc 49272 |
| This theorem is referenced by: csccl 49278 recsccl 49281 reccsc 49284 cotsqcscsq 49289 |
| Copyright terms: Public domain | W3C validator |