![]() |
Metamath
Proof Explorer Theorem List (p. 478 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | clnbgrel 47701* | Characterization of a member 𝑁 of the closed neighborhood of a vertex 𝑋 in a graph 𝐺. (Contributed by AV, 9-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) | ||
Theorem | clnbgrvtxel 47702 | Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) | ||
Theorem | clnbgrisvtx 47703 | Every member 𝑁 of the closed neighborhood of a vertex 𝐾 is a vertex. (Contributed by AV, 9-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁 ∈ 𝑉) | ||
Theorem | clnbgrssvtx 47704 | The closed neighborhood of a vertex 𝐾 in a graph is a subset of all vertices of the graph. (Contributed by AV, 9-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉 | ||
Theorem | clnbgrn0 47705 | The closed neighborhood of a vertex is never empty. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) ≠ ∅) | ||
Theorem | clnbupgr 47706* | The closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) | ||
Theorem | clnbupgrel 47707 | A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) | ||
Theorem | clnbgr0vtx 47708 | In a null graph (with no vertices), all closed neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
⊢ ((Vtx‘𝐺) = ∅ → (𝐺 ClNeighbVtx 𝐾) = ∅) | ||
Theorem | clnbgr0edg 47709 | In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.) |
⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾}) | ||
Theorem | clnbgrsym 47710 | In a graph, the closed neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by AV, 10-May-2025.) |
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 ClNeighbVtx 𝑁)) | ||
Theorem | predgclnbgrel 47711 | If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) | ||
Theorem | clnbgredg 47712 | A vertices connected by an edge with another vertex is a neigborhood of those vertex. (Contributed by AV, 24-Aug-2025.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ 𝑁) | ||
Theorem | clnbgrssedg 47713 | The vertices connected by an edge are a subset of the neigborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → 𝐾 ⊆ 𝑁) | ||
Theorem | edgusgrclnbfin 47714* | The size of the closed neighborhood of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by AV, 10-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 ClNeighbVtx 𝑈) ∈ Fin ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) | ||
Theorem | clnbusgrfi 47715 | The closed neighborhood of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by AV, 10-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉) → (𝐺 ClNeighbVtx 𝑈) ∈ Fin) | ||
Theorem | clnbfiusgrfi 47716 | The closed neighborhood of a vertex in a finite simple graph is a finite set. (Contributed by AV, 10-May-2025.) |
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝑁) ∈ Fin) | ||
Theorem | clnbgrlevtx 47717 | The size of the closed neighborhood of a vertex is at most the number of vertices of a graph. (Contributed by AV, 10-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (♯‘(𝐺 ClNeighbVtx 𝑈)) ≤ (♯‘𝑉) | ||
We have already definitions for open and closed neighborhoods of a vertex, which differs only in the fact that the first never contains the vertex, and the latter always contains the vertex. One of these definitions, however, cannot be simply derived from the other. This would be possible if a definition of a semiclosed neighborhood was available, see dfsclnbgr2 47718. The definitions for open and closed neighborhoods could be derived from such a more simple, but otherwise probably useless definition, see dfnbgr5 47723 and dfclnbgr5 47722. Depending on the existence of certain edges, a vertex belongs to its semiclosed neighborhood or not. An alternate approach is to introduce semiopen neighborhoods, see dfvopnbgr2 47725. The definitions for open and closed neighborhoods could also be derived from such a definition, see dfnbgr6 47729 and dfclnbgr6 47728. Like with semiclosed neighborhood, depending on the existence of certain edges, a vertex belongs to its semiopen neighborhood or not. It is unclear if either definition is/will be useful, and in contrast to dfsclnbgr2 47718, the definition of semiopen neighborhoods is much more complex. | ||
Theorem | dfsclnbgr2 47718* | Alternate definition of the semiclosed neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiclosed neighborhood 𝑆 of a vertex 𝑁 is the set of all vertices incident with edges which join the vertex 𝑁 with a vertex. Therefore, a vertex is contained in its semiclosed neighborhood if it is connected with any vertex by an edge (see sclnbgrelself 47720), even only with itself (i.e., by a loop). (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | ||
Theorem | sclnbgrel 47719* | Characterization of a member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) | ||
Theorem | sclnbgrelself 47720* | A vertex 𝑁 is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) | ||
Theorem | sclnbgrisvtx 47721* | Every member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 is a vertex. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉) | ||
Theorem | dfclnbgr5 47722* | Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiclosed neighborhood. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆)) | ||
Theorem | dfnbgr5 47723* | Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁})) | ||
Theorem | dfnbgrss 47724* | Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) | ||
Theorem | dfvopnbgr2 47725* | Alternate definition of the semiopen neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiopen neighborhood 𝑈 of a vertex 𝑁 is its open neighborhood together with itself if there is a loop at this vertex. (Contributed by AV, 15-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) | ||
Theorem | vopnbgrel 47726* | Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) | ||
Theorem | vopnbgrelself 47727* | A vertex 𝑁 is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ ∃𝑒 ∈ 𝐸 𝑒 = {𝑁})) | ||
Theorem | dfclnbgr6 47728* | Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiopen neighborhood. (Contributed by AV, 17-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑈)) | ||
Theorem | dfnbgr6 47729* | Alternate definition of the (open) neighborhood of a vertex as a difference of its semiopen neighborhood and the singleton of itself. (Contributed by AV, 17-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁})) | ||
Theorem | dfsclnbgr6 47730* | Alternate definition of a semiclosed neighborhood of a vertex as a union of a semiopen neighborhood and the vertex itself if there is a loop at this vertex. (Contributed by AV, 17-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) | ||
Theorem | dfnbgrss2 47731* | Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} ⇒ ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) | ||
Syntax | cisubgr 47732 | Extend class notation with induced subgraphs. |
class ISubGr | ||
Definition | df-isubgr 47733* | Define the function mapping graphs and subsets of their vertices to their induced subgraphs. A subgraph induced by a subset of vertices of a graph is a subgraph of the graph which contains all edges of the graph that join vertices of the subgraph (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). Although a graph may be given in any meaningful representation, its induced subgraphs are always ordered pairs of vertices and edges. (Contributed by AV, 27-Apr-2025.) |
⊢ ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ 〈𝑣, ⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) | ||
Theorem | isisubgr 47734* | The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) = 〈𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})〉) | ||
Theorem | isubgriedg 47735* | The edges of an induced subgraph. (Contributed by AV, 12-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})) | ||
Theorem | isubgrvtxuhgr 47736 | The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, 𝐸〉) | ||
Theorem | isubgrvtx 47737 | The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) | ||
Theorem | isubgruhgr 47738 | An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) | ||
Theorem | isubgrsubgr 47739 | An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) | ||
Theorem | isubgrupgr 47740 | An induced subgraph of a pseudograph is a pseudograph. (Contributed by AV, 14-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph) | ||
Theorem | isubgrumgr 47741 | An induced subgraph of a multigraph is a multigraph. (Contributed by AV, 15-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UMGraph) | ||
Theorem | isubgrusgr 47742 | An induced subgraph of a simple graph is a simple graph. (Contributed by AV, 15-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ USGraph) | ||
Theorem | isubgr0uhgr 47743 | The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025.) |
⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = 〈∅, ∅〉) | ||
This section is about isomorphisms of graphs, whereby the term "isomorphism" is used in both of its meanings (according to the Meriam-Webster dictionary, see https://www.merriam-webster.com/dictionary/isomorphism): "1: the quality or state of being isomorphic." and "2: a one-to-one correspondence between two mathematical sets". At first, an operation GraphIso is defined (see df-grim 47748) which provides the graph isomorphisms (as "one-to-one correspondence") between two given graphs. This definition, however, is applicable for any two sets, but is meaningful only if these sets have "vertices" and "edges". Afterwards, a binary relation ≃𝑔𝑟 is defined (see df-gric 47751) which is true for two graphs iff there is a graph isomorphisms between these graphs. Then these graphs are called "isomorphic". Therefore, this relation is also called "is isomorphic to" relation. More formally, 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓𝑓 ∈ (𝐴 GraphIso 𝐵) resp. 𝐴 ≃𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅. Notice that there can be multiple isomorphisms between two graphs. For example, let 〈{𝐴, 𝐵}, {{𝐴, 𝐵}}〉 and 〈{{𝑀, 𝑁}, {{𝑀, 𝑁}}〉 be two graphs with two vertices and one edge, then 𝐴 ↦ 𝑀, 𝐵 ↦ 𝑁 and 𝐴 ↦ 𝑁, 𝐵 ↦ 𝑀 are two different isomorphisms between these graphs. The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19299) resp. isomorphism between groups ≃𝑔 (see df-gic 19300). The general definition of graph isomorphisms and the relation "is isomorphic to" for graphs is specialized for simple hypergraphs (gricushgr 47770) and simple pseudographs (gricuspgr 47771). The latter corresponds to the definition in [Bollobas] p. 3. It is shown that the relation "is isomorphic to" for graphs is an equivalence relation, see gricer 47777. Finally, isomorphic graphs with different representations are studied (opstrgric 47779, ushggricedg 47780). Another approach could be to define a category of graphs (there are maybe multiple ones), where graph morphisms are couples consisting of a function on vertices and a function on edges with required compatibilities, as used in the definition of GraphIso. And then, a graph isomorphism is defined as an isomorphism in the category of graphs (something like "GraphIsom = ( Iso ` GraphCat )" ). Then general category theory theorems could be used, e.g., to show that graph isomorphism is an equivalence relation. | ||
Syntax | cgrisom 47744 | Extend class notation to include the graph ispmorphisms as pair. |
class GraphIsom | ||
Syntax | cgrim 47745 | Extend class notation to include the graph ispmorphisms. |
class GraphIso | ||
Syntax | cgric 47746 | Extend class notation to include the "is isomorphic to" relation for graphs. |
class ≃𝑔𝑟 | ||
Definition | df-grisom 47747* |
Define the class of all isomorphisms between two graphs. In contrast to
(𝐹
GraphIso 𝐻), which
is a set of functions between the vertices,
(𝐹
GraphIsom 𝐻) is a
set of pairs of functions: a function between
the vertices, and a function between the (indices of the) edges.
It is not clear if such a definition is useful. In the definition by [Diestel] p. 3, for example, the bijection between the vertices is called an isomorphism, as formalized in df-grim 47748. (Contributed by AV, 11-Dec-2022.) (New usage is discouraged.) |
⊢ GraphIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) | ||
Definition | df-grim 47748* | An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in [Diestel] p. 3. (Contributed by AV, 19-Apr-2025.) |
⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | ||
Theorem | grimfn 47749 | The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.) |
⊢ GraphIso Fn (V × V) | ||
Theorem | grimdmrel 47750 | The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
⊢ Rel dom GraphIso | ||
Definition | df-gric 47751 | Two graphs are said to be isomorphic iff they are connected by at least one isomorphism, see definition in [Diestel] p. 3 and definition in [Bollobas] p. 3. Isomorphic graphs share all global graph properties like order and size. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 19-Apr-2025.) |
⊢ ≃𝑔𝑟 = (◡ GraphIso “ (V ∖ 1o)) | ||
Theorem | isgrim 47752* | An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐷 = (iEdg‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) | ||
Theorem | grimprop 47753* | Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐷 = (iEdg‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) | ||
Theorem | grimf1o 47754 | An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | ||
Theorem | isuspgrim0lem 47755* | An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑀 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) & ⊢ 𝑁 = (𝑥 ∈ dom 𝐼 ↦ (◡𝐽‘(𝑀‘(𝐼‘𝑥)))) ⇒ ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → (𝑁:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑁‘𝑖)) = (𝐹 “ (𝐼‘𝑖)))) | ||
Theorem | isuspgrim0 47756* | An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) | ||
Theorem | uspgrimprop 47757* | An isomorphism of simple pseudographs is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) | ||
Theorem | isuspgrimlem 47758* | Lemma for isuspgrim 47759. (Contributed by AV, 27-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) | ||
Theorem | isuspgrim 47759* | A class is an isomorphism of simple pseudographs iff it is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. This corresponds to the formal definition in [Bollobas] p. 3 and the definition in [Diestel] p. 3. (Contributed by AV, 27-Apr-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) | ||
Theorem | grimidvtxedg 47760 | The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025.) |
⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻)) & ⊢ (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻)) ⇒ ⊢ (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻)) | ||
Theorem | grimid 47761 | The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and itself. (Contributed by AV, 29-Apr-2025.) (Prove shortened by AV, 5-May-2025.) |
⊢ (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐺)) | ||
Theorem | grimuhgr 47762 | If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025.) |
⊢ ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph) | ||
Theorem | grimcnv 47763 | The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025.) |
⊢ (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → ◡𝐹 ∈ (𝑇 GraphIso 𝑆))) | ||
Theorem | grimco 47764 | The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025.) |
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GraphIso 𝑈)) | ||
Theorem | brgric 47765 | The relation "is isomorphic to" for graphs. (Contributed by AV, 28-Apr-2025.) |
⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | ||
Theorem | brgrici 47766 | Prove that two graphs are isomorphic by an explicit isomorphism. (Contributed by AV, 28-Apr-2025.) |
⊢ (𝐹 ∈ (𝑅 GraphIso 𝑆) → 𝑅 ≃𝑔𝑟 𝑆) | ||
Theorem | gricrcl 47767 | Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025.) |
⊢ (𝐺 ≃𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | dfgric2 47768* | Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐼 = (iEdg‘𝐴) & ⊢ 𝐽 = (iEdg‘𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
Theorem | gricbri 47769* | Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) (Proof shortened by AV, 12-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐼 = (iEdg‘𝐴) & ⊢ 𝐽 = (iEdg‘𝐵) ⇒ ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) | ||
Theorem | gricushgr 47770* | The "is isomorphic to" relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) | ||
Theorem | gricuspgr 47771* | The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.) (Proof shortened by AV, 5-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) | ||
Theorem | gricrel 47772 | The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
⊢ Rel ≃𝑔𝑟 | ||
Theorem | gricref 47773 | Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 29-Apr-2025.) |
⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑔𝑟 𝐺) | ||
Theorem | gricsym 47774 | Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.) |
⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺)) | ||
Theorem | gricsymb 47775 | Graph isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Proof shortened by AV, 3-May-2025.) |
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑔𝑟 𝐴)) | ||
Theorem | grictr 47776 | Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.) |
⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) | ||
Theorem | gricer 47777 | Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.) (Proof shortened by AV, 11-Jul-2025.) |
⊢ ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
Theorem | gricen 47778 | Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025.) |
⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
Theorem | opstrgric 47779 | A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.) |
⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) | ||
Theorem | ushggricedg 47780 | A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐻 = 〈𝑉, ( I ↾ 𝐸)〉 ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐺 ≃𝑔𝑟 𝐻) | ||
Theorem | isubgrgrim 47781* | Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
Theorem | uhgrimisgrgriclem 47782* | Lemma for uhgrimisgrgric 47783. (Contributed by AV, 31-May-2025.) |
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) ↔ ∃𝑘 ∈ 𝐴 ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽))) | ||
Theorem | uhgrimisgrgric 47783 | For isomorphic hypergraphs, the induced subgraph of a subset of vertices of one graph is isomorphic to the subgraph induced by the image of the subset. (Contributed by AV, 31-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝑁 ⊆ 𝑉) → (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐹 “ 𝑁))) | ||
Theorem | clnbgrisubgrgrim 47784* | Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑌) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
Theorem | clnbgrgrimlem 47785* | Lemma for clnbgrgrim 47786: For two isomorphic hypergraphs, if there is an edge connecting the image of a vertex of the first graph with a vertex of the second graph, the vertex of the second graph is the image of a neighbor of the vertex of the first graph. (Contributed by AV, 2-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐻) ⇒ ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → ((𝐾 ∈ 𝐸 ∧ {(𝐹‘𝑋), 𝑌} ⊆ 𝐾) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑌)) | ||
Theorem | clnbgrgrim 47786 | Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝐻 ClNeighbVtx (𝐹‘𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋))) | ||
Theorem | grimedg 47787 | Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 7-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) | ||
Usually, a "triangle" in graph theory is a complete graph consisting of three vertices (denoted by " K3 "), see the definition in [Diestel] p. 3 or the definition in [Bollobas] p. 5. This corresponds to the definition of a "triangle graph" (which is a more precise term) in Wikipedia "Triangle graph", https://en.wikipedia.org/wiki/Triangle_graph, 27-Jul-2025: "In the mathematical field of graph theory, the triangle graph is a planar undirected graph with 3 vertices and 3 edges, in the form of a triangle. The triangle graph is also known as the cycle graph C3 and the complete graph K3." Often, however, the term "triangle" is also used to denote a corresponding subgraph of a given graph ("triangle in a graph"), see, for example, Wikipedia "Triangle-free graph", 28-Jul-2025, https://en.wikipedia.org/wiki/Triangle-free_graph: "In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges." In this subsection, a triangle (in a graph) is defined as a set of three vertices of a given graph. In this meaning, a triangle 𝑇 with (𝑇 ∈ (GrTriangles‘𝐺)) is neither a graph nor a subgraph, but it induces a triangle graph (𝐺 ISubGr 𝑇) as subgraph of the given graph 𝐺. We require that there are three (different) edges connecting the three (different) vertices of the triangle. Therefore, it is not sufficient for arbitrary hypergraphs to say "a triangle is a set of three (different) vertices connected with each other (by edges)", because there might be only one or two multiedges fulfilling this statement. We do not regard such degenerate cases as "triangle". The definition df-grtri 47789 is designed for a special purpose, namely to provide a criterion for two graphs being not isomorphic (see grimgrtri 47798). For other purposes, a more general definition might be useful, e.g., ComplSubGr = (𝑔 ∈ V, 𝑛 ∈ ℕ ↦ {𝑡 ∈ 𝒫 𝑣 ∣ ((♯‘𝑡) = 𝑛 ∧ (𝑔 ISubGr 𝑡) ∈ ComplGraph)}) for complete subgraphs of a given size (proposed by TA). With such a definition, we would have (GrTriangles‘𝐺) = (𝐺 ComplSubGr 3) (at least for simple graphs), and the definition df-grtri 47789 may become obsolete. | ||
Syntax | cgrtri 47788 | Extend class notation with triangles (in a graph). |
class GrTriangles | ||
Definition | df-grtri 47789* | Definition of a triangles in a graph. A triangle in a graph is a set of three (different) vertices completely connected with each other. Such vertices induce a closed walk of length 3, see grtriclwlk3 47796. (TODO: and a cycle of length 3 ,see grtricycl ). (Contributed by AV, 20-Jul-2025.) |
⊢ GrTriangles = (𝑔 ∈ V ↦ ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) | ||
Theorem | grtriproplem 47790 | Lemma for grtriprop 47792. (Contributed by AV, 23-Jul-2025.) |
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | ||
Theorem | grtri 47791* | The triangles in a graph. (Contributed by AV, 20-Jul-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) | ||
Theorem | grtriprop 47792* | The properties of a triangle. (Contributed by AV, 25-Jul-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | ||
Theorem | grtrif1o 47793 | Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto→𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)) | ||
Theorem | isgrtri 47794* | A triangle in a graph. (Contributed by AV, 20-Jul-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | ||
Theorem | grtrissvtx 47795 | A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇 ⊆ 𝑉) | ||
Theorem | grtriclwlk3 47796 | A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025.) |
⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) & ⊢ (𝜑 → 𝑃:(0..^3)–1-1-onto→𝑇) ⇒ ⊢ (𝜑 → 𝑃 ∈ (3 ClWWalksN 𝐺)) | ||
Theorem | grtrimap 47797 | Conditions for mapping triangles onto triangles. Lemma for grimgrtri 47798 and grlimgrtri 47820. (Contributed by AV, 23-Aug-2025.) |
⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3))) | ||
Theorem | grimgrtri 47798 | Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025.) (Proof shortened by AV, 24-Aug-2025.) |
⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphIso 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) ⇒ ⊢ (𝜑 → (𝐹 “ 𝑇) ∈ (GrTriangles‘𝐻)) | ||
Theorem | usgrgrtrirex 47799* | Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑎) ⇒ ⊢ (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) | ||
This section is about local isomorphisms of graphs, which are a generalization of isomorphisms of graphs, i.e., every isomorphism between two graphs is also a local isomorphism between these graphs, see uhgrimgrlim 47811. This definition is according to a chat in mathoverflow (https://mathoverflow.net/questions/491133/locally-isomorphic-graphs 47811): roughly speaking, it restricts the correspondence of two graphs to their neighborhoods. Additionally, a binary relation ≃𝑙𝑔𝑟 is defined (see df-grlic 47805) which is true for two graphs iff there is a local isomorphism between these graphs. Then these graphs are called "locally isomorphic". Therefore, this relation is also called "is locally isomorphic to" relation. As a main result of this section, it is shown that the "is locally isomorphic to" relation is an equivalence relation (for hypergraphs), see grlicer 47833. The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19299) and graph isomorphisms GraphIso (see df-grim 47748) resp. isomorphism between groups ≃𝑔 (see df-gic 19300) and isomorphism between graphs ≃𝑔𝑟 (see df-gric 47751). In the future, it should be shown that there are local isomorphisms between two graphs which are not (ordinary) isomorphisms between these graphs, as dicussed in the above mentioned chat in mathoverflow. | ||
Syntax | cgrlim 47800 | The class of graph local isomorphism sets. |
class GraphLocIso |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |