HomeHome Metamath Proof Explorer
Theorem List (p. 478 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 47701-47800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclnbgrel 47701* Characterization of a member 𝑁 of the closed neighborhood of a vertex 𝑋 in a graph 𝐺. (Contributed by AV, 9-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
 
Theoremclnbgrvtxel 47702 Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.)
𝑉 = (Vtx‘𝐺)       (𝐾𝑉𝐾 ∈ (𝐺 ClNeighbVtx 𝐾))
 
Theoremclnbgrisvtx 47703 Every member 𝑁 of the closed neighborhood of a vertex 𝐾 is a vertex. (Contributed by AV, 9-May-2025.)
𝑉 = (Vtx‘𝐺)       (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁𝑉)
 
Theoremclnbgrssvtx 47704 The closed neighborhood of a vertex 𝐾 in a graph is a subset of all vertices of the graph. (Contributed by AV, 9-May-2025.)
𝑉 = (Vtx‘𝐺)       (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉
 
Theoremclnbgrn0 47705 The closed neighborhood of a vertex is never empty. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)       (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) ≠ ∅)
 
Theoremclnbupgr 47706* The closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
 
Theoremclnbupgrel 47707 A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐾𝑉𝑁𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸)))
 
Theoremclnbgr0vtx 47708 In a null graph (with no vertices), all closed neighborhoods are empty. (Contributed by AV, 15-Nov-2020.)
((Vtx‘𝐺) = ∅ → (𝐺 ClNeighbVtx 𝐾) = ∅)
 
Theoremclnbgr0edg 47709 In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.)
(((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾})
 
Theoremclnbgrsym 47710 In a graph, the closed neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by AV, 10-May-2025.)
(𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 ClNeighbVtx 𝑁))
 
Theorempredgclnbgrel 47711 If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))
 
Theoremclnbgredg 47712 A vertices connected by an edge with another vertex is a neigborhood of those vertex. (Contributed by AV, 24-Aug-2025.)
𝐸 = (Edg‘𝐺)    &   𝑁 = (𝐺 ClNeighbVtx 𝑋)       ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)
 
Theoremclnbgrssedg 47713 The vertices connected by an edge are a subset of the neigborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.)
𝐸 = (Edg‘𝐺)    &   𝑁 = (𝐺 ClNeighbVtx 𝑋)       ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → 𝐾𝑁)
 
Theoremedgusgrclnbfin 47714* The size of the closed neighborhood of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by AV, 10-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((𝐺 ClNeighbVtx 𝑈) ∈ Fin ↔ {𝑒𝐸𝑈𝑒} ∈ Fin))
 
Theoremclnbusgrfi 47715 The closed neighborhood of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by AV, 10-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈𝑉) → (𝐺 ClNeighbVtx 𝑈) ∈ Fin)
 
Theoremclnbfiusgrfi 47716 The closed neighborhood of a vertex in a finite simple graph is a finite set. (Contributed by AV, 10-May-2025.)
((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝑁) ∈ Fin)
 
Theoremclnbgrlevtx 47717 The size of the closed neighborhood of a vertex is at most the number of vertices of a graph. (Contributed by AV, 10-May-2025.)
𝑉 = (Vtx‘𝐺)       (♯‘(𝐺 ClNeighbVtx 𝑈)) ≤ (♯‘𝑉)
 
21.48.15.2  Semiclosed and semiopen neighborhoods (experimental)

We have already definitions for open and closed neighborhoods of a vertex, which differs only in the fact that the first never contains the vertex, and the latter always contains the vertex. One of these definitions, however, cannot be simply derived from the other. This would be possible if a definition of a semiclosed neighborhood was available, see dfsclnbgr2 47718. The definitions for open and closed neighborhoods could be derived from such a more simple, but otherwise probably useless definition, see dfnbgr5 47723 and dfclnbgr5 47722. Depending on the existence of certain edges, a vertex belongs to its semiclosed neighborhood or not.

An alternate approach is to introduce semiopen neighborhoods, see dfvopnbgr2 47725. The definitions for open and closed neighborhoods could also be derived from such a definition, see dfnbgr6 47729 and dfclnbgr6 47728. Like with semiclosed neighborhood, depending on the existence of certain edges, a vertex belongs to its semiopen neighborhood or not.

It is unclear if either definition is/will be useful, and in contrast to dfsclnbgr2 47718, the definition of semiopen neighborhoods is much more complex.

 
Theoremdfsclnbgr2 47718* Alternate definition of the semiclosed neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiclosed neighborhood 𝑆 of a vertex 𝑁 is the set of all vertices incident with edges which join the vertex 𝑁 with a vertex. Therefore, a vertex is contained in its semiclosed neighborhood if it is connected with any vertex by an edge (see sclnbgrelself 47720), even only with itself (i.e., by a loop). (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑁𝑉𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
 
Theoremsclnbgrel 47719* Characterization of a member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑋𝑆 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑋} ⊆ 𝑒))
 
Theoremsclnbgrelself 47720* A vertex 𝑁 is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑁𝑆 ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 𝑁𝑒))
 
Theoremsclnbgrisvtx 47721* Every member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 is a vertex. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑋𝑆𝑋𝑉)
 
Theoremdfclnbgr5 47722* Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiclosed neighborhood. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆))
 
Theoremdfnbgr5 47723* Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁}))
 
Theoremdfnbgrss 47724* Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}    &   𝐸 = (Edg‘𝐺)       (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
 
Theoremdfvopnbgr2 47725* Alternate definition of the semiopen neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiopen neighborhood 𝑈 of a vertex 𝑁 is its open neighborhood together with itself if there is a loop at this vertex. (Contributed by AV, 15-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}       (𝑁𝑉𝑈 = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
 
Theoremvopnbgrel 47726* Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}       (𝑁𝑉 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 ((𝑋𝑁𝑁𝑒𝑋𝑒) ∨ (𝑋 = 𝑁𝑒 = {𝑋})))))
 
Theoremvopnbgrelself 47727* A vertex 𝑁 is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}       (𝑁𝑉 → (𝑁𝑈 ↔ ∃𝑒𝐸 𝑒 = {𝑁}))
 
Theoremdfclnbgr6 47728* Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiopen neighborhood. (Contributed by AV, 17-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}       (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑈))
 
Theoremdfnbgr6 47729* Alternate definition of the (open) neighborhood of a vertex as a difference of its semiopen neighborhood and the singleton of itself. (Contributed by AV, 17-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}       (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁}))
 
Theoremdfsclnbgr6 47730* Alternate definition of a semiclosed neighborhood of a vertex as a union of a semiopen neighborhood and the vertex itself if there is a loop at this vertex. (Contributed by AV, 17-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}       (𝑁𝑉𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
 
Theoremdfnbgrss2 47731* Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}    &   𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}       (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
 
21.48.15.3  Induced subgraphs
 
Syntaxcisubgr 47732 Extend class notation with induced subgraphs.
class ISubGr
 
Definitiondf-isubgr 47733* Define the function mapping graphs and subsets of their vertices to their induced subgraphs. A subgraph induced by a subset of vertices of a graph is a subgraph of the graph which contains all edges of the graph that join vertices of the subgraph (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). Although a graph may be given in any meaningful representation, its induced subgraphs are always ordered pairs of vertices and edges. (Contributed by AV, 27-Apr-2025.)
ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
 
Theoremisisubgr 47734* The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
 
Theoremisubgriedg 47735* The edges of an induced subgraph. (Contributed by AV, 12-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
 
Theoremisubgrvtxuhgr 47736 The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)
 
Theoremisubgrvtx 47737 The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
 
Theoremisubgruhgr 47738 An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
 
Theoremisubgrsubgr 47739 An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
 
Theoremisubgrupgr 47740 An induced subgraph of a pseudograph is a pseudograph. (Contributed by AV, 14-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph)
 
Theoremisubgrumgr 47741 An induced subgraph of a multigraph is a multigraph. (Contributed by AV, 15-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UMGraph)
 
Theoremisubgrusgr 47742 An induced subgraph of a simple graph is a simple graph. (Contributed by AV, 15-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ USGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ USGraph)
 
Theoremisubgr0uhgr 47743 The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025.)
(𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)
 
21.48.15.4  Isomorphisms of graphs

This section is about isomorphisms of graphs, whereby the term "isomorphism" is used in both of its meanings (according to the Meriam-Webster dictionary, see https://www.merriam-webster.com/dictionary/isomorphism): "1: the quality or state of being isomorphic." and "2: a one-to-one correspondence between two mathematical sets".

At first, an operation GraphIso is defined (see df-grim 47748) which provides the graph isomorphisms (as "one-to-one correspondence") between two given graphs. This definition, however, is applicable for any two sets, but is meaningful only if these sets have "vertices" and "edges".

Afterwards, a binary relation 𝑔𝑟 is defined (see df-gric 47751) which is true for two graphs iff there is a graph isomorphisms between these graphs. Then these graphs are called "isomorphic". Therefore, this relation is also called "is isomorphic to" relation. More formally, 𝐴𝑔𝑟 𝐵 𝑓𝑓 ∈ (𝐴 GraphIso 𝐵) resp. 𝐴𝑔𝑟 𝐵 (𝐴 GraphIso 𝐵) ≠ ∅. Notice that there can be multiple isomorphisms between two graphs. For example, let ⟨{𝐴, 𝐵}, {{𝐴, 𝐵}}⟩ and ⟨{{𝑀, 𝑁}, {{𝑀, 𝑁}}⟩ be two graphs with two vertices and one edge, then 𝐴𝑀, 𝐵𝑁 and 𝐴𝑁, 𝐵𝑀 are two different isomorphisms between these graphs.

The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19299) resp. isomorphism between groups 𝑔 (see df-gic 19300).

The general definition of graph isomorphisms and the relation "is isomorphic to" for graphs is specialized for simple hypergraphs (gricushgr 47770) and simple pseudographs (gricuspgr 47771). The latter corresponds to the definition in [Bollobas] p. 3. It is shown that the relation "is isomorphic to" for graphs is an equivalence relation, see gricer 47777. Finally, isomorphic graphs with different representations are studied (opstrgric 47779, ushggricedg 47780).

Another approach could be to define a category of graphs (there are maybe multiple ones), where graph morphisms are couples consisting of a function on vertices and a function on edges with required compatibilities, as used in the definition of GraphIso. And then, a graph isomorphism is defined as an isomorphism in the category of graphs (something like "GraphIsom = ( Iso ` GraphCat )" ). Then general category theory theorems could be used, e.g., to show that graph isomorphism is an equivalence relation.

 
Syntaxcgrisom 47744 Extend class notation to include the graph ispmorphisms as pair.
class GraphIsom
 
Syntaxcgrim 47745 Extend class notation to include the graph ispmorphisms.
class GraphIso
 
Syntaxcgric 47746 Extend class notation to include the "is isomorphic to" relation for graphs.
class 𝑔𝑟
 
Definitiondf-grisom 47747* Define the class of all isomorphisms between two graphs. In contrast to (𝐹 GraphIso 𝐻), which is a set of functions between the vertices, (𝐹 GraphIsom 𝐻) is a set of pairs of functions: a function between the vertices, and a function between the (indices of the) edges.

It is not clear if such a definition is useful. In the definition by [Diestel] p. 3, for example, the bijection between the vertices is called an isomorphism, as formalized in df-grim 47748. (Contributed by AV, 11-Dec-2022.) (New usage is discouraged.)

GraphIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))})
 
Definitiondf-grim 47748* An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in [Diestel] p. 3. (Contributed by AV, 19-Apr-2025.)
GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
 
Theoremgrimfn 47749 The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.)
GraphIso Fn (V × V)
 
Theoremgrimdmrel 47750 The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.)
Rel dom GraphIso
 
Definitiondf-gric 47751 Two graphs are said to be isomorphic iff they are connected by at least one isomorphism, see definition in [Diestel] p. 3 and definition in [Bollobas] p. 3. Isomorphic graphs share all global graph properties like order and size. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 19-Apr-2025.)
𝑔𝑟 = ( GraphIso “ (V ∖ 1o))
 
Theoremisgrim 47752* An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (iEdg‘𝐺)    &   𝐷 = (iEdg‘𝐻)       ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
 
Theoremgrimprop 47753* Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (iEdg‘𝐺)    &   𝐷 = (iEdg‘𝐻)       (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖)))))
 
Theoremgrimf1o 47754 An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)       (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)
 
Theoremisuspgrim0lem 47755* An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (Edg‘𝐻)    &   𝐼 = (iEdg‘𝐺)    &   𝐽 = (iEdg‘𝐻)    &   𝑀 = (𝑥𝐸 ↦ (𝐹𝑥))    &   𝑁 = (𝑥 ∈ dom 𝐼 ↦ (𝐽‘(𝑀‘(𝐼𝑥))))       ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑀:𝐸1-1-onto𝐷) → (𝑁:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑁𝑖)) = (𝐹 “ (𝐼𝑖))))
 
Theoremisuspgrim0 47756* An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (Edg‘𝐻)       ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
 
Theoremuspgrimprop 47757* An isomorphism of simple pseudographs is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (Edg‘𝐻)       ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
 
Theoremisuspgrimlem 47758* Lemma for isuspgrim 47759. (Contributed by AV, 27-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (Edg‘𝐻)       ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)) → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)
 
Theoremisuspgrim 47759* A class is an isomorphism of simple pseudographs iff it is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. This corresponds to the formal definition in [Bollobas] p. 3 and the definition in [Diestel] p. 3. (Contributed by AV, 27-Apr-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (Edg‘𝐻)       ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
 
Theoremgrimidvtxedg 47760 The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025.)
(𝜑𝐺 ∈ UHGraph)    &   (𝜑𝐻𝑉)    &   (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))    &   (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))       (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))
 
Theoremgrimid 47761 The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and itself. (Contributed by AV, 29-Apr-2025.) (Prove shortened by AV, 5-May-2025.)
(𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐺))
 
Theoremgrimuhgr 47762 If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025.)
((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph)
 
Theoremgrimcnv 47763 The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025.)
(𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))
 
Theoremgrimco 47764 The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025.)
((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))
 
Theorembrgric 47765 The relation "is isomorphic to" for graphs. (Contributed by AV, 28-Apr-2025.)
(𝑅𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅)
 
Theorembrgrici 47766 Prove that two graphs are isomorphic by an explicit isomorphism. (Contributed by AV, 28-Apr-2025.)
(𝐹 ∈ (𝑅 GraphIso 𝑆) → 𝑅𝑔𝑟 𝑆)
 
Theoremgricrcl 47767 Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025.)
(𝐺𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
 
Theoremdfgric2 47768* Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.)
𝑉 = (Vtx‘𝐴)    &   𝑊 = (Vtx‘𝐵)    &   𝐼 = (iEdg‘𝐴)    &   𝐽 = (iEdg‘𝐵)       ((𝐴𝑋𝐵𝑌) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
 
Theoremgricbri 47769* Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) (Proof shortened by AV, 12-Jun-2025.)
𝑉 = (Vtx‘𝐴)    &   𝑊 = (Vtx‘𝐵)    &   𝐼 = (iEdg‘𝐴)    &   𝐽 = (iEdg‘𝐵)       (𝐴𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
 
Theoremgricushgr 47770* The "is isomorphic to" relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022.)
𝑉 = (Vtx‘𝐴)    &   𝑊 = (Vtx‘𝐵)    &   𝐸 = (Edg‘𝐴)    &   𝐾 = (Edg‘𝐵)       ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))))
 
Theoremgricuspgr 47771* The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.) (Proof shortened by AV, 5-May-2025.)
𝑉 = (Vtx‘𝐴)    &   𝑊 = (Vtx‘𝐵)    &   𝐸 = (Edg‘𝐴)    &   𝐾 = (Edg‘𝐵)       ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
 
Theoremgricrel 47772 The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.)
Rel ≃𝑔𝑟
 
Theoremgricref 47773 Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 29-Apr-2025.)
(𝐺 ∈ UHGraph → 𝐺𝑔𝑟 𝐺)
 
Theoremgricsym 47774 Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.)
(𝐺 ∈ UHGraph → (𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺))
 
Theoremgricsymb 47775 Graph isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Proof shortened by AV, 3-May-2025.)
((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴𝑔𝑟 𝐵𝐵𝑔𝑟 𝐴))
 
Theoremgrictr 47776 Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.)
((𝑅𝑔𝑟 𝑆𝑆𝑔𝑟 𝑇) → 𝑅𝑔𝑟 𝑇)
 
Theoremgricer 47777 Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.) (Proof shortened by AV, 11-Jul-2025.)
( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
 
Theoremgricen 47778 Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025.)
𝐵 = (Vtx‘𝑅)    &   𝐶 = (Vtx‘𝑆)       (𝑅𝑔𝑟 𝑆𝐵𝐶)
 
Theoremopstrgric 47779 A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.)
𝐺 = ⟨𝑉, 𝐸    &   𝐻 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺𝑔𝑟 𝐻)
 
Theoremushggricedg 47780 A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩       (𝐺 ∈ USHGraph → 𝐺𝑔𝑟 𝐻)
 
Theoremisubgrgrim 47781* Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐼 = (iEdg‘𝐺)    &   𝐽 = (iEdg‘𝐻)    &   𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}    &   𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}       (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
 
Theoremuhgrimisgrgriclem 47782* Lemma for uhgrimisgrgric 47783. (Contributed by AV, 31-May-2025.)
(((𝐹:𝑉1-1-onto𝑊𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁𝑉𝐼:𝐴1-1-onto𝐵) ∧ ∀𝑖𝐴 (𝐻‘(𝐼𝑖)) = (𝐹 “ (𝐺𝑖))) → ((𝐽𝐵 ∧ (𝐻𝐽) ⊆ (𝐹𝑁)) ↔ ∃𝑘𝐴 ((𝐺𝑘) ⊆ 𝑁 ∧ (𝐼𝑘) = 𝐽)))
 
Theoremuhgrimisgrgric 47783 For isomorphic hypergraphs, the induced subgraph of a subset of vertices of one graph is isomorphic to the subgraph induced by the image of the subset. (Contributed by AV, 31-May-2025.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝑁𝑉) → (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐹𝑁)))
 
Theoremclnbgrisubgrgrim 47784* Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.)
𝐼 = (iEdg‘𝐺)    &   𝐽 = (iEdg‘𝐻)    &   𝑁 = (𝐺 ClNeighbVtx 𝑋)    &   𝑀 = (𝐻 ClNeighbVtx 𝑌)    &   𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}    &   𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}       ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
 
Theoremclnbgrgrimlem 47785* Lemma for clnbgrgrim 47786: For two isomorphic hypergraphs, if there is an edge connecting the image of a vertex of the first graph with a vertex of the second graph, the vertex of the second graph is the image of a neighbor of the vertex of the first graph. (Contributed by AV, 2-Jun-2025.)
𝑉 = (Vtx‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐸 = (Edg‘𝐻)       (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝑋𝑉𝑌𝑊)) → ((𝐾𝐸 ∧ {(𝐹𝑋), 𝑌} ⊆ 𝐾) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑌))
 
Theoremclnbgrgrim 47786 Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025.)
𝑉 = (Vtx‘𝐺)       ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (𝐻 ClNeighbVtx (𝐹𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋)))
 
Theoremgrimedg 47787 Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 7-Jun-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (Edg‘𝐺)    &   𝐸 = (Edg‘𝐻)       ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
 
21.48.15.5  Triangles in graphs

Usually, a "triangle" in graph theory is a complete graph consisting of three vertices (denoted by " K3 "), see the definition in [Diestel] p. 3 or the definition in [Bollobas] p. 5. This corresponds to the definition of a "triangle graph" (which is a more precise term) in Wikipedia "Triangle graph", https://en.wikipedia.org/wiki/Triangle_graph, 27-Jul-2025: "In the mathematical field of graph theory, the triangle graph is a planar undirected graph with 3 vertices and 3 edges, in the form of a triangle. The triangle graph is also known as the cycle graph C3 and the complete graph K3."

Often, however, the term "triangle" is also used to denote a corresponding subgraph of a given graph ("triangle in a graph"), see, for example, Wikipedia "Triangle-free graph", 28-Jul-2025, https://en.wikipedia.org/wiki/Triangle-free_graph: "In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges."

In this subsection, a triangle (in a graph) is defined as a set of three vertices of a given graph. In this meaning, a triangle 𝑇 with (𝑇 ∈ (GrTriangles‘𝐺)) is neither a graph nor a subgraph, but it induces a triangle graph (𝐺 ISubGr 𝑇) as subgraph of the given graph 𝐺.

We require that there are three (different) edges connecting the three (different) vertices of the triangle. Therefore, it is not sufficient for arbitrary hypergraphs to say "a triangle is a set of three (different) vertices connected with each other (by edges)", because there might be only one or two multiedges fulfilling this statement. We do not regard such degenerate cases as "triangle".

The definition df-grtri 47789 is designed for a special purpose, namely to provide a criterion for two graphs being not isomorphic (see grimgrtri 47798). For other purposes, a more general definition might be useful, e.g., ComplSubGr = (𝑔 ∈ V, 𝑛 ∈ ℕ ↦ {𝑡 ∈ 𝒫 𝑣 ∣ ((♯‘𝑡) = 𝑛 ∧ (𝑔 ISubGr 𝑡) ∈ ComplGraph)}) for complete subgraphs of a given size (proposed by TA). With such a definition, we would have (GrTriangles‘𝐺) = (𝐺 ComplSubGr 3) (at least for simple graphs), and the definition df-grtri 47789 may become obsolete.

 
Syntaxcgrtri 47788 Extend class notation with triangles (in a graph).
class GrTriangles
 
Definitiondf-grtri 47789* Definition of a triangles in a graph. A triangle in a graph is a set of three (different) vertices completely connected with each other. Such vertices induce a closed walk of length 3, see grtriclwlk3 47796. (TODO: and a cycle of length 3 ,see grtricycl ). (Contributed by AV, 20-Jul-2025.)
GrTriangles = (𝑔 ∈ V ↦ (Vtx‘𝑔) / 𝑣(Edg‘𝑔) / 𝑒{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))})
 
Theoremgrtriproplem 47790 Lemma for grtriprop 47792. (Contributed by AV, 23-Jul-2025.)
((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
 
Theoremgrtri 47791* The triangles in a graph. (Contributed by AV, 20-Jul-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺𝑊 → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
 
Theoremgrtriprop 47792* The properties of a triangle. (Contributed by AV, 25-Jul-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
 
Theoremgrtrif1o 47793 Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))
 
Theoremisgrtri 47794* A triangle in a graph. (Contributed by AV, 20-Jul-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
 
Theoremgrtrissvtx 47795 A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025.)
𝑉 = (Vtx‘𝐺)       (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇𝑉)
 
Theoremgrtriclwlk3 47796 A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025.)
(𝜑𝑇 ∈ (GrTriangles‘𝐺))    &   (𝜑𝑃:(0..^3)–1-1-onto𝑇)       (𝜑𝑃 ∈ (3 ClWWalksN 𝐺))
 
Theoremgrtrimap 47797 Conditions for mapping triangles onto triangles. Lemma for grimgrtri 47798 and grlimgrtri 47820. (Contributed by AV, 23-Aug-2025.)
(𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))
 
Theoremgrimgrtri 47798 Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025.) (Proof shortened by AV, 24-Aug-2025.)
(𝜑𝐺 ∈ UHGraph)    &   (𝜑𝐻 ∈ UHGraph)    &   (𝜑𝐹 ∈ (𝐺 GraphIso 𝐻))    &   (𝜑𝑇 ∈ (GrTriangles‘𝐺))       (𝜑 → (𝐹𝑇) ∈ (GrTriangles‘𝐻))
 
Theoremusgrgrtrirex 47799* Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝑁 = (𝐺 NeighbVtx 𝑎)       (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
 
21.48.15.6  Local isomorphisms of graphs

This section is about local isomorphisms of graphs, which are a generalization of isomorphisms of graphs, i.e., every isomorphism between two graphs is also a local isomorphism between these graphs, see uhgrimgrlim 47811.

This definition is according to a chat in mathoverflow (https://mathoverflow.net/questions/491133/locally-isomorphic-graphs 47811): roughly speaking, it restricts the correspondence of two graphs to their neighborhoods.

Additionally, a binary relation 𝑙𝑔𝑟 is defined (see df-grlic 47805) which is true for two graphs iff there is a local isomorphism between these graphs. Then these graphs are called "locally isomorphic". Therefore, this relation is also called "is locally isomorphic to" relation. As a main result of this section, it is shown that the "is locally isomorphic to" relation is an equivalence relation (for hypergraphs), see grlicer 47833.

The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19299) and graph isomorphisms GraphIso (see df-grim 47748) resp. isomorphism between groups 𝑔 (see df-gic 19300) and isomorphism between graphs 𝑔𝑟 (see df-gric 47751).

In the future, it should be shown that there are local isomorphisms between two graphs which are not (ordinary) isomorphisms between these graphs, as dicussed in the above mentioned chat in mathoverflow.

 
Syntaxcgrlim 47800 The class of graph local isomorphism sets.
class GraphLocIso
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >