Detailed syntax breakdown of Definition df-css
| Step | Hyp | Ref
| Expression |
| 1 | | ccss 21632 |
. 2
class
ClSubSp |
| 2 | | vh |
. . 3
setvar ℎ |
| 3 | | cvv 3463 |
. . 3
class
V |
| 4 | | vs |
. . . . . 6
setvar 𝑠 |
| 5 | 4 | cv 1538 |
. . . . 5
class 𝑠 |
| 6 | 2 | cv 1538 |
. . . . . . . 8
class ℎ |
| 7 | | cocv 21631 |
. . . . . . . 8
class
ocv |
| 8 | 6, 7 | cfv 6540 |
. . . . . . 7
class
(ocv‘ℎ) |
| 9 | 5, 8 | cfv 6540 |
. . . . . 6
class
((ocv‘ℎ)‘𝑠) |
| 10 | 9, 8 | cfv 6540 |
. . . . 5
class
((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠)) |
| 11 | 5, 10 | wceq 1539 |
. . . 4
wff 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠)) |
| 12 | 11, 4 | cab 2712 |
. . 3
class {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))} |
| 13 | 2, 3, 12 | cmpt 5205 |
. 2
class (ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) |
| 14 | 1, 13 | wceq 1539 |
1
wff ClSubSp =
(ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) |