Detailed syntax breakdown of Definition df-ocv
| Step | Hyp | Ref
| Expression |
| 1 | | cocv 21678 |
. 2
class
ocv |
| 2 | | vh |
. . 3
setvar ℎ |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vs |
. . . 4
setvar 𝑠 |
| 5 | 2 | cv 1539 |
. . . . . 6
class ℎ |
| 6 | | cbs 17247 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Base‘ℎ) |
| 8 | 7 | cpw 4600 |
. . . 4
class 𝒫
(Base‘ℎ) |
| 9 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 13 | | cip 17302 |
. . . . . . . . 9
class
·𝑖 |
| 14 | 5, 13 | cfv 6561 |
. . . . . . . 8
class
(·𝑖‘ℎ) |
| 15 | 10, 12, 14 | co 7431 |
. . . . . . 7
class (𝑥(·𝑖‘ℎ)𝑦) |
| 16 | | csca 17300 |
. . . . . . . . 9
class
Scalar |
| 17 | 5, 16 | cfv 6561 |
. . . . . . . 8
class
(Scalar‘ℎ) |
| 18 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 19 | 17, 18 | cfv 6561 |
. . . . . . 7
class
(0g‘(Scalar‘ℎ)) |
| 20 | 15, 19 | wceq 1540 |
. . . . . 6
wff (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) |
| 21 | 4 | cv 1539 |
. . . . . 6
class 𝑠 |
| 22 | 20, 11, 21 | wral 3061 |
. . . . 5
wff
∀𝑦 ∈
𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) |
| 23 | 22, 9, 7 | crab 3436 |
. . . 4
class {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))} |
| 24 | 4, 8, 23 | cmpt 5225 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))}) |
| 25 | 2, 3, 24 | cmpt 5225 |
. 2
class (ℎ ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |
| 26 | 1, 25 | wceq 1540 |
1
wff ocv =
(ℎ ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |