Detailed syntax breakdown of Definition df-ocv
Step | Hyp | Ref
| Expression |
1 | | cocv 20865 |
. 2
class
ocv |
2 | | vh |
. . 3
setvar ℎ |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vs |
. . . 4
setvar 𝑠 |
5 | 2 | cv 1538 |
. . . . . 6
class ℎ |
6 | | cbs 16912 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6433 |
. . . . 5
class
(Base‘ℎ) |
8 | 7 | cpw 4533 |
. . . 4
class 𝒫
(Base‘ℎ) |
9 | | vx |
. . . . . . . . 9
setvar 𝑥 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑥 |
11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑦 |
13 | | cip 16967 |
. . . . . . . . 9
class
·𝑖 |
14 | 5, 13 | cfv 6433 |
. . . . . . . 8
class
(·𝑖‘ℎ) |
15 | 10, 12, 14 | co 7275 |
. . . . . . 7
class (𝑥(·𝑖‘ℎ)𝑦) |
16 | | csca 16965 |
. . . . . . . . 9
class
Scalar |
17 | 5, 16 | cfv 6433 |
. . . . . . . 8
class
(Scalar‘ℎ) |
18 | | c0g 17150 |
. . . . . . . 8
class
0g |
19 | 17, 18 | cfv 6433 |
. . . . . . 7
class
(0g‘(Scalar‘ℎ)) |
20 | 15, 19 | wceq 1539 |
. . . . . 6
wff (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) |
21 | 4 | cv 1538 |
. . . . . 6
class 𝑠 |
22 | 20, 11, 21 | wral 3064 |
. . . . 5
wff
∀𝑦 ∈
𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) |
23 | 22, 9, 7 | crab 3068 |
. . . 4
class {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))} |
24 | 4, 8, 23 | cmpt 5157 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))}) |
25 | 2, 3, 24 | cmpt 5157 |
. 2
class (ℎ ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |
26 | 1, 25 | wceq 1539 |
1
wff ocv =
(ℎ ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |