| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssval | Structured version Visualization version GIF version | ||
| Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
| cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssval | ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | cssval.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | fveq2 6885 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) | |
| 4 | cssval.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
| 6 | 5 | fveq1d 6887 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑠) = ( ⊥ ‘𝑠)) |
| 7 | 5, 6 | fveq12d 6892 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑠))) |
| 8 | 7 | eqeq2d 2745 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) ↔ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)))) |
| 9 | 8 | abbidv 2800 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))} = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 10 | df-css 21635 | . . . 4 ⊢ ClSubSp = (𝑤 ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))}) | |
| 11 | fvex 6898 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
| 12 | 11 | pwex 5360 | . . . . 5 ⊢ 𝒫 (Base‘𝑊) ∈ V |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))) | |
| 14 | eqid 2734 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14, 4 | ocvss 21641 | . . . . . . . 8 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊) |
| 16 | fvex 6898 | . . . . . . . . 9 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ V | |
| 17 | 16 | elpw 4584 | . . . . . . . 8 ⊢ (( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊)) |
| 18 | 15, 17 | mpbir 231 | . . . . . . 7 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) |
| 19 | 13, 18 | eqeltrdi 2841 | . . . . . 6 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 ∈ 𝒫 (Base‘𝑊)) |
| 20 | 19 | abssi 4050 | . . . . 5 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ⊆ 𝒫 (Base‘𝑊) |
| 21 | 12, 20 | ssexi 5302 | . . . 4 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ∈ V |
| 22 | 9, 10, 21 | fvmpt 6995 | . . 3 ⊢ (𝑊 ∈ V → (ClSubSp‘𝑊) = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 23 | 2, 22 | eqtrid 2781 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 24 | 1, 23 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3463 ⊆ wss 3931 𝒫 cpw 4580 ‘cfv 6540 Basecbs 17228 ocvcocv 21631 ClSubSpccss 21632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-ocv 21634 df-css 21635 |
| This theorem is referenced by: iscss 21654 |
| Copyright terms: Public domain | W3C validator |