| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssval | Structured version Visualization version GIF version | ||
| Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
| cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssval | ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | cssval.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) | |
| 4 | cssval.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
| 6 | 5 | fveq1d 6824 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑠) = ( ⊥ ‘𝑠)) |
| 7 | 5, 6 | fveq12d 6829 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑠))) |
| 8 | 7 | eqeq2d 2742 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) ↔ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)))) |
| 9 | 8 | abbidv 2797 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))} = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 10 | df-css 21601 | . . . 4 ⊢ ClSubSp = (𝑤 ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))}) | |
| 11 | fvex 6835 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
| 12 | 11 | pwex 5316 | . . . . 5 ⊢ 𝒫 (Base‘𝑊) ∈ V |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))) | |
| 14 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14, 4 | ocvss 21607 | . . . . . . . 8 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊) |
| 16 | fvex 6835 | . . . . . . . . 9 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ V | |
| 17 | 16 | elpw 4551 | . . . . . . . 8 ⊢ (( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊)) |
| 18 | 15, 17 | mpbir 231 | . . . . . . 7 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) |
| 19 | 13, 18 | eqeltrdi 2839 | . . . . . 6 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 ∈ 𝒫 (Base‘𝑊)) |
| 20 | 19 | abssi 4015 | . . . . 5 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ⊆ 𝒫 (Base‘𝑊) |
| 21 | 12, 20 | ssexi 5258 | . . . 4 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ∈ V |
| 22 | 9, 10, 21 | fvmpt 6929 | . . 3 ⊢ (𝑊 ∈ V → (ClSubSp‘𝑊) = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 23 | 2, 22 | eqtrid 2778 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 24 | 1, 23 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ‘cfv 6481 Basecbs 17120 ocvcocv 21597 ClSubSpccss 21598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-ocv 21600 df-css 21601 |
| This theorem is referenced by: iscss 21620 |
| Copyright terms: Public domain | W3C validator |