| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssval | Structured version Visualization version GIF version | ||
| Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
| cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssval | ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3476 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | cssval.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | fveq2 6865 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) | |
| 4 | cssval.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
| 6 | 5 | fveq1d 6867 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑠) = ( ⊥ ‘𝑠)) |
| 7 | 5, 6 | fveq12d 6872 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑠))) |
| 8 | 7 | eqeq2d 2741 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) ↔ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)))) |
| 9 | 8 | abbidv 2796 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))} = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 10 | df-css 21579 | . . . 4 ⊢ ClSubSp = (𝑤 ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))}) | |
| 11 | fvex 6878 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
| 12 | 11 | pwex 5343 | . . . . 5 ⊢ 𝒫 (Base‘𝑊) ∈ V |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))) | |
| 14 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14, 4 | ocvss 21585 | . . . . . . . 8 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊) |
| 16 | fvex 6878 | . . . . . . . . 9 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ V | |
| 17 | 16 | elpw 4575 | . . . . . . . 8 ⊢ (( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊)) |
| 18 | 15, 17 | mpbir 231 | . . . . . . 7 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) |
| 19 | 13, 18 | eqeltrdi 2837 | . . . . . 6 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 ∈ 𝒫 (Base‘𝑊)) |
| 20 | 19 | abssi 4041 | . . . . 5 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ⊆ 𝒫 (Base‘𝑊) |
| 21 | 12, 20 | ssexi 5285 | . . . 4 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ∈ V |
| 22 | 9, 10, 21 | fvmpt 6975 | . . 3 ⊢ (𝑊 ∈ V → (ClSubSp‘𝑊) = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 23 | 2, 22 | eqtrid 2777 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 24 | 1, 23 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3455 ⊆ wss 3922 𝒫 cpw 4571 ‘cfv 6519 Basecbs 17185 ocvcocv 21575 ClSubSpccss 21576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-ov 7397 df-ocv 21578 df-css 21579 |
| This theorem is referenced by: iscss 21598 |
| Copyright terms: Public domain | W3C validator |