![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssval | Structured version Visualization version GIF version |
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssval | ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3490 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | cssval.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | fveq2 6900 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) | |
4 | cssval.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝑊) | |
5 | 3, 4 | eqtr4di 2785 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
6 | 5 | fveq1d 6902 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑠) = ( ⊥ ‘𝑠)) |
7 | 5, 6 | fveq12d 6907 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑠))) |
8 | 7 | eqeq2d 2738 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) ↔ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)))) |
9 | 8 | abbidv 2796 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))} = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
10 | df-css 21601 | . . . 4 ⊢ ClSubSp = (𝑤 ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))}) | |
11 | fvex 6913 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
12 | 11 | pwex 5382 | . . . . 5 ⊢ 𝒫 (Base‘𝑊) ∈ V |
13 | id 22 | . . . . . . 7 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))) | |
14 | eqid 2727 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | 14, 4 | ocvss 21607 | . . . . . . . 8 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊) |
16 | fvex 6913 | . . . . . . . . 9 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ V | |
17 | 16 | elpw 4608 | . . . . . . . 8 ⊢ (( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊)) |
18 | 15, 17 | mpbir 230 | . . . . . . 7 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) |
19 | 13, 18 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 ∈ 𝒫 (Base‘𝑊)) |
20 | 19 | abssi 4065 | . . . . 5 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ⊆ 𝒫 (Base‘𝑊) |
21 | 12, 20 | ssexi 5324 | . . . 4 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ∈ V |
22 | 9, 10, 21 | fvmpt 7008 | . . 3 ⊢ (𝑊 ∈ V → (ClSubSp‘𝑊) = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
23 | 2, 22 | eqtrid 2779 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
24 | 1, 23 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2704 Vcvv 3471 ⊆ wss 3947 𝒫 cpw 4604 ‘cfv 6551 Basecbs 17185 ocvcocv 21597 ClSubSpccss 21598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-ocv 21600 df-css 21601 |
This theorem is referenced by: iscss 21620 |
Copyright terms: Public domain | W3C validator |