![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssval | Structured version Visualization version GIF version |
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssval | ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | cssval.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | fveq2 6530 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) | |
4 | cssval.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝑊) | |
5 | 3, 4 | syl6eqr 2847 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
6 | 5 | fveq1d 6532 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑠) = ( ⊥ ‘𝑠)) |
7 | 5, 6 | fveq12d 6537 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑠))) |
8 | 7 | eqeq2d 2803 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) ↔ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)))) |
9 | 8 | abbidv 2858 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))} = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
10 | df-css 20478 | . . . 4 ⊢ ClSubSp = (𝑤 ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))}) | |
11 | fvex 6543 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
12 | 11 | pwex 5165 | . . . . 5 ⊢ 𝒫 (Base‘𝑊) ∈ V |
13 | id 22 | . . . . . . 7 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))) | |
14 | eqid 2793 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | 14, 4 | ocvss 20484 | . . . . . . . 8 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊) |
16 | fvex 6543 | . . . . . . . . 9 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ V | |
17 | 16 | elpw 4453 | . . . . . . . 8 ⊢ (( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘𝑠)) ⊆ (Base‘𝑊)) |
18 | 15, 17 | mpbir 232 | . . . . . . 7 ⊢ ( ⊥ ‘( ⊥ ‘𝑠)) ∈ 𝒫 (Base‘𝑊) |
19 | 13, 18 | syl6eqel 2889 | . . . . . 6 ⊢ (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) → 𝑠 ∈ 𝒫 (Base‘𝑊)) |
20 | 19 | abssi 3962 | . . . . 5 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ⊆ 𝒫 (Base‘𝑊) |
21 | 12, 20 | ssexi 5110 | . . . 4 ⊢ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ∈ V |
22 | 9, 10, 21 | fvmpt 6626 | . . 3 ⊢ (𝑊 ∈ V → (ClSubSp‘𝑊) = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
23 | 2, 22 | syl5eq 2841 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
24 | 1, 23 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 {cab 2773 Vcvv 3432 ⊆ wss 3854 𝒫 cpw 4447 ‘cfv 6217 Basecbs 16300 ocvcocv 20474 ClSubSpccss 20475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-fv 6225 df-ov 7010 df-ocv 20477 df-css 20478 |
This theorem is referenced by: iscss 20497 |
Copyright terms: Public domain | W3C validator |