MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssval Structured version   Visualization version   GIF version

Theorem cssval 20644
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssval (𝑊𝑋𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
Distinct variable groups:   ,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem cssval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3426 . 2 (𝑊𝑋𝑊 ∈ V)
2 cssval.c . . 3 𝐶 = (ClSubSp‘𝑊)
3 fveq2 6717 . . . . . . . 8 (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊))
4 cssval.o . . . . . . . 8 = (ocv‘𝑊)
53, 4eqtr4di 2796 . . . . . . 7 (𝑤 = 𝑊 → (ocv‘𝑤) = )
65fveq1d 6719 . . . . . . 7 (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑠) = ( 𝑠))
75, 6fveq12d 6724 . . . . . 6 (𝑤 = 𝑊 → ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) = ( ‘( 𝑠)))
87eqeq2d 2748 . . . . 5 (𝑤 = 𝑊 → (𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠)) ↔ 𝑠 = ( ‘( 𝑠))))
98abbidv 2807 . . . 4 (𝑤 = 𝑊 → {𝑠𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))} = {𝑠𝑠 = ( ‘( 𝑠))})
10 df-css 20626 . . . 4 ClSubSp = (𝑤 ∈ V ↦ {𝑠𝑠 = ((ocv‘𝑤)‘((ocv‘𝑤)‘𝑠))})
11 fvex 6730 . . . . . 6 (Base‘𝑊) ∈ V
1211pwex 5273 . . . . 5 𝒫 (Base‘𝑊) ∈ V
13 id 22 . . . . . . 7 (𝑠 = ( ‘( 𝑠)) → 𝑠 = ( ‘( 𝑠)))
14 eqid 2737 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
1514, 4ocvss 20632 . . . . . . . 8 ( ‘( 𝑠)) ⊆ (Base‘𝑊)
16 fvex 6730 . . . . . . . . 9 ( ‘( 𝑠)) ∈ V
1716elpw 4517 . . . . . . . 8 (( ‘( 𝑠)) ∈ 𝒫 (Base‘𝑊) ↔ ( ‘( 𝑠)) ⊆ (Base‘𝑊))
1815, 17mpbir 234 . . . . . . 7 ( ‘( 𝑠)) ∈ 𝒫 (Base‘𝑊)
1913, 18eqeltrdi 2846 . . . . . 6 (𝑠 = ( ‘( 𝑠)) → 𝑠 ∈ 𝒫 (Base‘𝑊))
2019abssi 3983 . . . . 5 {𝑠𝑠 = ( ‘( 𝑠))} ⊆ 𝒫 (Base‘𝑊)
2112, 20ssexi 5215 . . . 4 {𝑠𝑠 = ( ‘( 𝑠))} ∈ V
229, 10, 21fvmpt 6818 . . 3 (𝑊 ∈ V → (ClSubSp‘𝑊) = {𝑠𝑠 = ( ‘( 𝑠))})
232, 22syl5eq 2790 . 2 (𝑊 ∈ V → 𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
241, 23syl 17 1 (𝑊𝑋𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {cab 2714  Vcvv 3408  wss 3866  𝒫 cpw 4513  cfv 6380  Basecbs 16760  ocvcocv 20622  ClSubSpccss 20623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-ocv 20625  df-css 20626
This theorem is referenced by:  iscss  20645
  Copyright terms: Public domain W3C validator