MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cxp Structured version   Visualization version   GIF version

Definition df-cxp 26058
Description: Define the power function on complex numbers. Note that the value of this function when ๐‘ฅ = 0 and (โ„œโ€˜๐‘ฆ) โ‰ค 0, ๐‘ฆ โ‰  0 should properly be undefined, but defining it by convention this way simplifies the domain. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
df-cxp โ†‘๐‘ = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ โ„‚ โ†ฆ if(๐‘ฅ = 0, if(๐‘ฆ = 0, 1, 0), (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ)))))
Distinct variable group:   ๐‘ฅ,๐‘ฆ

Detailed syntax breakdown of Definition df-cxp
StepHypRef Expression
1 ccxp 26056 . 2 class โ†‘๐‘
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 cc 11105 . . 3 class โ„‚
52cv 1541 . . . . 5 class ๐‘ฅ
6 cc0 11107 . . . . 5 class 0
75, 6wceq 1542 . . . 4 wff ๐‘ฅ = 0
83cv 1541 . . . . . 6 class ๐‘ฆ
98, 6wceq 1542 . . . . 5 wff ๐‘ฆ = 0
10 c1 11108 . . . . 5 class 1
119, 10, 6cif 4528 . . . 4 class if(๐‘ฆ = 0, 1, 0)
12 clog 26055 . . . . . . 7 class log
135, 12cfv 6541 . . . . . 6 class (logโ€˜๐‘ฅ)
14 cmul 11112 . . . . . 6 class ยท
158, 13, 14co 7406 . . . . 5 class (๐‘ฆ ยท (logโ€˜๐‘ฅ))
16 ce 16002 . . . . 5 class exp
1715, 16cfv 6541 . . . 4 class (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ)))
187, 11, 17cif 4528 . . 3 class if(๐‘ฅ = 0, if(๐‘ฆ = 0, 1, 0), (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ))))
192, 3, 4, 4, 18cmpo 7408 . 2 class (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ โ„‚ โ†ฆ if(๐‘ฅ = 0, if(๐‘ฆ = 0, 1, 0), (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ)))))
201, 19wceq 1542 1 wff โ†‘๐‘ = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ โ„‚ โ†ฆ if(๐‘ฅ = 0, if(๐‘ฆ = 0, 1, 0), (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ)))))
Colors of variables: wff setvar class
This definition is referenced by:  cxpval  26164
  Copyright terms: Public domain W3C validator