Step | Hyp | Ref
| Expression |
1 | | ccxp 26056 |
. 2
class
โ๐ |
2 | | vx |
. . 3
setvar ๐ฅ |
3 | | vy |
. . 3
setvar ๐ฆ |
4 | | cc 11105 |
. . 3
class
โ |
5 | 2 | cv 1541 |
. . . . 5
class ๐ฅ |
6 | | cc0 11107 |
. . . . 5
class
0 |
7 | 5, 6 | wceq 1542 |
. . . 4
wff ๐ฅ = 0 |
8 | 3 | cv 1541 |
. . . . . 6
class ๐ฆ |
9 | 8, 6 | wceq 1542 |
. . . . 5
wff ๐ฆ = 0 |
10 | | c1 11108 |
. . . . 5
class
1 |
11 | 9, 10, 6 | cif 4528 |
. . . 4
class if(๐ฆ = 0, 1, 0) |
12 | | clog 26055 |
. . . . . . 7
class
log |
13 | 5, 12 | cfv 6541 |
. . . . . 6
class
(logโ๐ฅ) |
14 | | cmul 11112 |
. . . . . 6
class
ยท |
15 | 8, 13, 14 | co 7406 |
. . . . 5
class (๐ฆ ยท (logโ๐ฅ)) |
16 | | ce 16002 |
. . . . 5
class
exp |
17 | 15, 16 | cfv 6541 |
. . . 4
class
(expโ(๐ฆ
ยท (logโ๐ฅ))) |
18 | 7, 11, 17 | cif 4528 |
. . 3
class if(๐ฅ = 0, if(๐ฆ = 0, 1, 0), (expโ(๐ฆ ยท (logโ๐ฅ)))) |
19 | 2, 3, 4, 4, 18 | cmpo 7408 |
. 2
class (๐ฅ โ โ, ๐ฆ โ โ โฆ if(๐ฅ = 0, if(๐ฆ = 0, 1, 0), (expโ(๐ฆ ยท (logโ๐ฅ))))) |
20 | 1, 19 | wceq 1542 |
1
wff
โ๐ = (๐ฅ โ โ, ๐ฆ โ โ โฆ if(๐ฅ = 0, if(๐ฆ = 0, 1, 0), (expโ(๐ฆ ยท (logโ๐ฅ))))) |