Detailed syntax breakdown of Definition df-cxp
| Step | Hyp | Ref
| Expression |
| 1 | | ccxp 26597 |
. 2
class
↑𝑐 |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cc 11153 |
. . 3
class
ℂ |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 6 | | cc0 11155 |
. . . . 5
class
0 |
| 7 | 5, 6 | wceq 1540 |
. . . 4
wff 𝑥 = 0 |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑦 |
| 9 | 8, 6 | wceq 1540 |
. . . . 5
wff 𝑦 = 0 |
| 10 | | c1 11156 |
. . . . 5
class
1 |
| 11 | 9, 10, 6 | cif 4525 |
. . . 4
class if(𝑦 = 0, 1, 0) |
| 12 | | clog 26596 |
. . . . . . 7
class
log |
| 13 | 5, 12 | cfv 6561 |
. . . . . 6
class
(log‘𝑥) |
| 14 | | cmul 11160 |
. . . . . 6
class
· |
| 15 | 8, 13, 14 | co 7431 |
. . . . 5
class (𝑦 · (log‘𝑥)) |
| 16 | | ce 16097 |
. . . . 5
class
exp |
| 17 | 15, 16 | cfv 6561 |
. . . 4
class
(exp‘(𝑦
· (log‘𝑥))) |
| 18 | 7, 11, 17 | cif 4525 |
. . 3
class if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))) |
| 19 | 2, 3, 4, 4, 18 | cmpo 7433 |
. 2
class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) |
| 20 | 1, 19 | wceq 1540 |
1
wff
↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) |