Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-log | Structured version Visualization version GIF version |
Description: Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
df-log | ⊢ log = ◡(exp ↾ (◡ℑ “ (-π(,]π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clog 25615 | . 2 class log | |
2 | ce 15699 | . . . 4 class exp | |
3 | cim 14737 | . . . . . 6 class ℑ | |
4 | 3 | ccnv 5579 | . . . . 5 class ◡ℑ |
5 | cpi 15704 | . . . . . . 7 class π | |
6 | 5 | cneg 11136 | . . . . . 6 class -π |
7 | cioc 13009 | . . . . . 6 class (,] | |
8 | 6, 5, 7 | co 7255 | . . . . 5 class (-π(,]π) |
9 | 4, 8 | cima 5583 | . . . 4 class (◡ℑ “ (-π(,]π)) |
10 | 2, 9 | cres 5582 | . . 3 class (exp ↾ (◡ℑ “ (-π(,]π))) |
11 | 10 | ccnv 5579 | . 2 class ◡(exp ↾ (◡ℑ “ (-π(,]π))) |
12 | 1, 11 | wceq 1539 | 1 wff log = ◡(exp ↾ (◡ℑ “ (-π(,]π))) |
Colors of variables: wff setvar class |
This definition is referenced by: logrn 25619 dflog2 25621 dvlog 25711 efopnlem2 25717 |
Copyright terms: Public domain | W3C validator |