| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-log | Structured version Visualization version GIF version | ||
| Description: Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Paul Chapman, 21-Apr-2008.) |
| Ref | Expression |
|---|---|
| df-log | ⊢ log = ◡(exp ↾ (◡ℑ “ (-π(,]π))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clog 26596 | . 2 class log | |
| 2 | ce 16097 | . . . 4 class exp | |
| 3 | cim 15137 | . . . . . 6 class ℑ | |
| 4 | 3 | ccnv 5684 | . . . . 5 class ◡ℑ |
| 5 | cpi 16102 | . . . . . . 7 class π | |
| 6 | 5 | cneg 11493 | . . . . . 6 class -π |
| 7 | cioc 13388 | . . . . . 6 class (,] | |
| 8 | 6, 5, 7 | co 7431 | . . . . 5 class (-π(,]π) |
| 9 | 4, 8 | cima 5688 | . . . 4 class (◡ℑ “ (-π(,]π)) |
| 10 | 2, 9 | cres 5687 | . . 3 class (exp ↾ (◡ℑ “ (-π(,]π))) |
| 11 | 10 | ccnv 5684 | . 2 class ◡(exp ↾ (◡ℑ “ (-π(,]π))) |
| 12 | 1, 11 | wceq 1540 | 1 wff log = ◡(exp ↾ (◡ℑ “ (-π(,]π))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: logrn 26600 dflog2 26602 dvlog 26693 efopnlem2 26699 |
| Copyright terms: Public domain | W3C validator |